13 resultados para Patellar tendinitis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total knee arthroplasty (TKA) disturbs patellar blood flow, an unintended accompaniment to TKA that may be a cause of postoperative anterior knee pain. We examine whether disrupted patellar blood flow correlates with anterior knee pain following TKA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progressive retropatellar arthrosis is often seen in dated rigid distal realignment (i.e. osteotomy of tuberositas) at long-term follow-ups. Therefore, operations for lateral dislocation of the patella are still discussed controversially. Dynamic, proximal realignments seem to have lower rates of arthrosis but higher rates of redislocation. Recently, in anatomic and biomechanic studies, the m. vastus medialis obliquus (vmo) was found to be one of the most important proximal restraints to lateral dislocation of the patella.A total of 28 patients (mean age 21.5 years) were treated between 1994 and 2003 with a plasty of the vmo for lateral patellar dislocation. The technique was performed for most etiologies of femoropatellar instability.For this proximal soft tissue technique, the muscle tendon is detached from its patellar insertion. Subsequently, the tendon is reinserted at the patella 10-15 mm more distally and fixed with Mitek anchors. Full weight bearing in extension is possible immediately after surgery. An active vastus medialis training is started after 6 weeks.Of the patients, 27 were evaluated clinically and radiologically in 2004 (a mean of 5 years postoperatively). A total of 83% of the patients estimated the result to be good or excellent, 10% were satisfied and 7% were discontent. The mean Lysholm-Knee-Score was 83.1 points. Two patients suffered a patella redislocation (7%). A statistically significant improvement of the congruence angle was noted in the radiographs, even in medium-term controls. In 89% of the cases no or only little retropatellar arthrosis was observed. These 5 year results are comparable to those of other techniques for distal or proximal realignments. The rate of redislocation was below average. Compared to the rate of retropatellar arthrosis in long-term results of rigid distal realignment, our patients demonstrated a relative low rate after 5 years. We attribute this to the minimal interference in physiological joint mechanics and to the restored anatomy. In terms of future long-term results, our findings are promising. The idea of a proximal dynamic stabilization and the causal operative approach at the origin of pathology using vmo-plasty was confirmed in recent anatomic and biomechanic studies. Over or under correction of soft tissues could be adapted. More rigid techniques of distal realignment do not allow an adaptation to this extent and can lead to prearthrotic hyperpression in the medial femoropatellar and femorotibial joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligament balancing in total knee arthroplasty may have an important influence on joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during ligament balancing, a device that intraoperatively measures knee joint forces and moments was developed. Its performance and surgical advantages were evaluated on six cadaver specimens mounted on a knee joint loading apparatus allowing unconstrained knee motion as well as compression and varus-valgus loading. Four different experiments were performed on each specimen. (1) Knee joints were axially loaded. Comparison between applied and measured compressive forces demonstrated the accuracy and reliability of in situ measurements (1.8N). (2) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based approach was equivalent to the surgical method while the moment-based, which is considered optimal, showed a tendency of lateral imbalance. (3) To estimate the importance of keeping the patella in its anatomical position during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the contact force induced by the patellar load was shifted to the lateral compartment. (4) The effect of minor and major medial collateral ligament releases was biomechanically quantified. On average, the medial contact force was reduced by 20% and 46%, respectively. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. This series of experiments thus demonstrated the device's potential to improve ligament balancing and survivorship of total knee arthroplasty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast quantitative MRI has become an important tool for biochemical characterization of tissue beyond conventional T1, T2, and T2*-weighted imaging. As a result, steady-state free precession (SSFP) techniques have attracted increased interest, and several methods have been developed for rapid quantification of relaxation times using steady-state free precession. In this work, a new and fast approach for T2 mapping is introduced based on partial RF spoiling of nonbalanced steady-state free precession. The new T2 mapping technique is evaluated and optimized from simulations, and in vivo results are presented for human brain at 1.5 T and for human articular cartilage at 3.0 T. The range of T2 for gray and white matter was from 60 msec (for the corpus callosum) to 100 msec (for cortical gray matter). For cartilage, spatial variation in T2 was observed between deep (34 msec) and superficial (48 msec) layers, as well as between tibial (33 msec), femoral, (54 msec) and patellar (43 msec) cartilage. Excellent correspondence between T2 values derived from partially spoiled SSFP scans and the ones found with a reference multicontrast spin-echo technique is observed, corroborating the accuracy of the new method for proper T2 mapping. Finally, the feasibility of a fast high-resolution quantitative partially spoiled SSFP T2 scan is demonstrated at 7.0 T for human patellar cartilage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A retrospective study was performed on the use of bioabsorbable pins in the fixation of osteochondral fractures (OCFs) after traumatic patellar dislocation in children. Eighteen children (13 females, 5 males) aged 11 to 15 years (mean age 13.1 years) with osteochondral fracture (OCF) of the knee joint were treated at the authors' institution. Followup ranged from 22 months to 5 years. Diagnosis was verified by X-ray and magnetic resonance imaging (MRI) of the knee and patella. In seven patients the osteochondral fragment was detached from the patella and in 11 it was detached from the lateral femoral condyle. All patients were subjected to open reduction and fixation of the lesion with bioabsorbable pins. Postoperatively, the knee was immobilized in a cast and all patients were mobilized applying a standardized protocol. Bone consolidation was successful in 17 of the 18 patients. Bioabsorbable pins reliably fix OCF in children and adolescents, demonstrating a high incidence of consolidation of the detached osteochondral fragment in short- and middle-term followup without requiring further operative procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Anterior cruciate ligament (ACL) rupture is a common lesion. Current treatment emphasizes arthroscopic ACL reconstruction via a graft, although this approach is associated with potential drawbacks. A new method of dynamic intraligamentary stabilization (DIS) was subjected to biomechanical analysis to determine whether it provides the necessary knee stability for optimal ACL healing. METHODS Six human knees from cadavers were harvested. The patellar tendon, joint capsule and all muscular attachments to the tibia and femur were removed, leaving the collateral and the cruciate ligaments intact. The knees were stabilized and the ACL kinematics analyzed. Anterior-posterior (AP) stability measurements evaluated the knees in the following conditions: (i) intact ACL, (ii) ACL rupture, (iii) ACL rupture with primary stabilization, (iv) primary stabilization after 50 motion cycles, (v) ACL rupture with DIS, and (vi) DIS after 50 motion cycles. RESULTS After primary suture stabilization, average AP laxity was 3.2mm, which increased to an average of 11.26mm after 50 movement cycles. With primary ACL stabilization using DIS, however, average laxity values were consistently lower than those of the intact ligament, increasing from an initial AP laxity of 3.00mm to just 3.2mm after 50 movement cycles. CONCLUSIONS Dynamic intraligamentary stabilization established and maintained close contact between the two ends of the ruptured ACL, thus ensuring optimal conditions for potential healing after primary reconstruction. The present ex vivo findings show that the DIS technique is able to restore AP stability of the knee.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 15-month-old, spayed female, Bernese mountain dog was presented to the Institute of Small Animal Surgery at the University of Zurich because of chronic left forelimb lameness. The referring veterinarian diagnosed pain in the left shoulder region and had treated the dog with systemic non-steroidal anti-inflammatory drugs and restricted exercise for a two-week period. The follow-up examination revealed only minimal improvement and therefore, the dog was referred for further diagnostic evaluation. Chronic bicipital tenosynovitis and tendinitis of the infraspinatus muscle was diagnosed based on survey radiographs, arthrography, ultrasound, computed tomography (CT), and synovial fluid cytology. The dog underwent three sessions of extracorporeal shockwave therapy and substantial clinical improvement was observed. On follow-up examinations, only mild left forelimb lameness was evident following exercise, and changes in the intertubercular groove and at the supraglenoid tuberosity appeared less active on radiographs and CT. However, six months following treatment, mild degenerative joint disease was apparent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy applicable and powerful tool to identify trochlea dysplasia in newborns and might be used for screening for trochlea dysplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Correction of all kind of deformities at the distal part of the femur (supracondylar). INDICATIONS Flexion, extension osteotomies, and varus or valgus, and external or internal rotation osteotomies, and shortening osteotomies of the distal femur or combined surgical procedures (e.g., extension and de-rotation osteotomy). CONTRAINDICATIONS Osteotomy through unknown bony process. SURGICAL TECHNIQUE LCP system provides angular stable fixation. POSTOPERATIVE MANAGEMENT Without concomitant surgical procedures of soft tissue (e.g., patellar tendon shortening), early functional rehabilitation is possible with immediate weight bearing (35 kg for small fragment plates and 70 kg for large fragment plates). RESULTS The surgical procedure is safe and is associated with few complications. Overall complication rate in this series of patients was 3%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To determine whether body weight, body condition score, or various body dimensions were associated with acute thoracolumbar intervertebral disk extrusion or protrusion and whether any of these factors were associated with severity of clinical signs in Dachshunds. DESIGN Cross-sectional clinical study. ANIMALS 75 Dachshunds with (n = 39) or without (36) acute thoracolumbar intervertebral disk extrusion or protrusion. PROCEDURES Signalment, various body measurements, body weight, body condition score, and spinal cord injury grade were recorded at the time of initial examination. RESULTS Mean T1-S1 distance and median tuber calcaneus-to-patellar tendon (TC-PT) distance were significantly shorter in affected than in unaffected dogs. A 1-cm decrease in T1-S1 distance was associated with a 2.1-times greater odds of being affected, and a 1-cm decrease in TC-PT distance was associated with an 11.1-times greater odds of being affected. Results of multivariable logistic regression also indicated that affected dogs were taller at the withers and had a larger pelvic circumference than unaffected dogs, after adjusting for other body measurements. Results of ordinal logistic regression indicated that longer T1-S1 distance, taller height at the withers, and smaller pelvic circumference were associated with more severe spinal cord injury. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that certain body dimensions may be associated with acute thoracolumbar intervertebral disk extrusion or protrusion in Dachshunds and, in affected dogs, with severity of neurologic dysfunction.