3 resultados para Partial waves

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion–photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for γ⁎γ⁎→ππ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on dispersion theory, we present a formalism for a model-independent evaluation of the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. In particular, we comment on the definition of the pion pole in this framework and provide a master formula that relates the effect from ππ intermediate states to the partial waves for the process γ * γ * → ππ. All contributions are expressed in terms of on-shell form factors and scattering amplitudes, and as such amenable to an experimental determination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this talk, we present a coupled system of integral equations for the πN → πN (s-channel) and ππ → N̅N (t-channel) lowest partial waves, derived from Roy–Steiner equations for pion–nucleon scattering. After giving a brief overview of this system of equations, we present the solution of the t-channel sub-problem by means of Muskhelishvili–Omnès techniques, and solve the s-channel sub-problem after finding a set of phase shifts and subthreshold parameters which satisfy the Roy–Steiner equations.