3 resultados para Parent compounds
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Thienopyridines can cause neutropenia and agranulocytosis. The aim of the current investigations was to compare cytotoxicity of ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel for human neutrophil granulocytes with the toxicity for lymphocytes and to investigate underlying mechanisms. For granulocytes, clopidogrel, ticlopidine, clopidogrel carboxylate and prasugrel were concentration-dependently toxic starting at 10μM. Cytotoxicity could be prevented by the myeloperoxidase inhibitor rutin, but not by the cytochrome P450 inhibitor ketoconazole. All compounds were also toxic for lymphocytes, but cytotoxicity started at 100μM and could not be prevented by rutin or ketoconazole. Granulocytes metabolized ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel, and metabolization was inhibited by rutin, but not by ketoconazole. Metabolism of these compounds by lymphocytes was much slower and could not be inhibited by ketoconazole or rutin. In neutrophils, all compounds investigated decreased the electrical potential across the inner mitochondrial membrane, were associated with cellular accumulation of ROS, mitochondrial loss of cytochrome c and induction of apoptosis starting at 10μM. All of these effects could be inhibited by rutin, but not by ketoconazole. Similar findings were obtained in lymphocytes; but compared to neutrophils, the effects were detectable only at higher concentrations and were not inhibited by rutin. In conclusion, ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel are toxic for both granulocytes and lymphocytes. In granulocytes, cytotoxicity is more accentuated than in lymphocytes and depends on metabolization by myeloperoxidase. These findings suggest a mitochondrial mechanism for cytotoxicity for both myeloperoxidase-associated metabolites and, at higher concentrations, also for the parent compounds.
Resumo:
Ketamine is widely used as an anesthetic in a variety of drug combinations in human and veterinary medicine. Recently, it gained new interest for use in long-term pain therapy administered in sub-anesthetic doses in humans and animals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPk) model for ketamine in ponies and to investigate the effect of low-dose ketamine infusion on the amplitude and the duration of the nociceptive withdrawal reflex (NWR). A target-controlled infusion (TCI) of ketamine with a target plasma level of 1 microg/ml S-ketamine over 120 min under isoflurane anesthesia was performed in Shetland ponies. A quantitative electromyographic assessment of the NWR was done before, during and after the TCI. Plasma levels of R-/S-ketamine and R-/S-norketamine were determined by enantioselective capillary electrophoresis. These data and two additional data sets from bolus studies were used to build a PBPk model for ketamine in ponies. The peak-to-peak amplitude and the duration of the NWR decreased significantly during TCI and returned slowly toward baseline values after the end of TCI. The PBPk model provides reliable prediction of plasma and tissue levels of R- and S-ketamine and R- and S-norketamine. Furthermore, biotransformation of ketamine takes place in the liver and in the lung via first-pass metabolism. Plasma concentrations of S-norketamine were higher compared to R-norketamine during TCI at all time points. Analysis of the data suggested identical biotransformation rates from the parent compounds to the principle metabolites (R- and S-norketamine) but different downstream metabolism to further metabolites. The PBPk model can provide predictions of R- and S-ketamine and norketamine concentrations in other clinical settings (e.g. horses).
Resumo:
Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5-bound PACs [Oxygenated PAHs (OPAHs), nitro-PAHs and parent-PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an), to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5-bound PACs). To achieve these objectives, we sampled 24-h PM2.5 aerosols (once in every 6 days, from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the concentrations of PACs in them. The PM2.5-bound concentrations of Σcarbonyl-OPAHs, ∑ hydroxyl + carboxyl-OPAHs, Σnitro-PAHs and Σalkyl + parent-PAHs ranged between 5–22, 0.2–13, 0.3–7, and 7–387 ng m− 3, respectively, being markedly higher than in most western cities. This represented a range of 0.01–0.4% and 0.002–0.06% of the mass of organic C in PM2.5 and the total mass of PM2.5, respectively. The sums of the concentrations of each compound group had winter-to-summer ratios ranging from 3 to 8 and most individual OPAHs and nitro-PAHs had higher concentrations in winter than in summer, suggesting a dominant influence of emissions from household heating and winter meteorological conditions. Ambient temperature, air pressure, and wind speed explained a large part of the temporal variation in PACs concentrations. The lifetime excess cancer risk from inhalation (attributable to selected PAHs and nitro-PAHs) was six fold higher in winter (averaging 1450 persons per million residents of Xi'an) than in summer. Our results call for the development of emission control measures.