3 resultados para Panel cointegration test
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The tumour suppressor p53 is commonly detected in tissues of companion animals by means of antibodies raised against the human protein. The following three-step procedure was devised to test the suitability of such antibodies for immunohistochemistry on canine tissues. (1) Western blot and immunohistochemical analyses on bacterially expressed recombinant canine protein to assess human-to-canine cross-reactivity. (2) Immunohistochemistry of cultured, UVB-irradiated canine keratinocytes to evaluate suitability for detection of endogenous p53. (3) Immunohistochemistry on tissue arrays to further substantiate suitability of the antibodies on a panel of normal and neoplastic human and canine tissues. Five of six antibodies cross-reacted with recombinant canine p53. Three of these (PAb122, PAb240, CM-1) also immunolabelled stabilized wild type p53 in cell cultures and elicited a consistent, characteristic labelling pattern in a subset of tumours. However, two alternative batches of polyclonal antibody CM-1 failed to detect p53 in cell cultures, while showing a characteristic labelling pattern of a completely different subset of tumours and unspecific labelling of normal tissues. The test system described is well suited to the selection of antibodies for immunohistochemical p53 detection. The results emphasize the need to include appropriate controls, especially for polyclonal antibodies.
Resumo:
BACKGROUND Detection of HIV-1 p24 antigen permits early identification of primary HIV infection and timely intervention to limit further spread of the infection. Principally, HIV screening should equally detect all viral variants, but reagents for a standardised test evaluation are limited. Therefore, we aimed to create an inexhaustible panel of diverse HIV-1 p24 antigens. METHODS We generated a panel of 43 recombinantly expressed virus-like particles (VLPs), containing the structural Gag proteins of HIV-1 subtypes A-H and circulating recombinant forms (CRF) CRF01_AE, CRF02_AG, CRF12_BF, CRF20_BG and group O. Eleven 4th generation antigen/antibody tests and five antigen-only tests were evaluated for their ability to detect VLPs diluted in human plasma to p24 concentrations equivalent to 50, 10 and 2 IU/ml of the WHO p24 standard. Three tests were also evaluated for their ability to detect p24 after heat-denaturation for immune-complex disruption, a pre-requisite for ultrasensitive p24 detection. RESULTS Our VLP panel exhibited an average intra-clade p24 diversity of 6.7%. Among the 4th generation tests, the Abbott Architect and Siemens Enzygnost Integral 4 had the highest sensitivity of 97.7% and 93%, respectively. Alere Determine Combo and BioRad Access were least sensitive with 10.1% and 40.3%, respectively. Antigen-only tests were slightly more sensitive than combination tests. Almost all tests detected the WHO HIV-1 p24 standard at a concentration of 2 IU/ml, but their ability to detect this input for different subtypes varied greatly. Heat-treatment lowered overall detectability of HIV-1 p24 in two of the three tests, but only few VLPs had a more than 3-fold loss in p24 detection. CONCLUSIONS The HIV-1 Gag subtype panel has a broad diversity and proved useful for a standardised evaluation of the detection limit and breadth of subtype detection of p24 antigen-detecting tests. Several tests exhibited problems, particularly with non-B subtypes.
Resumo:
Introduction: Clinical reasoning is essential for the practice of medicine. In theory of development of medical expertise it is stated, that clinical reasoning starts from analytical processes namely the storage of isolated facts and the logical application of the ‘rules’ of diagnosis. Then the learners successively develop so called semantic networks and illness-scripts which finally are used in an intuitive non-analytic fashion [1], [2]. The script concordance test (SCT) is an example for assessing clinical reasoning [3]. However the aggregate scoring [3] of the SCT is recognized as problematic [4]. The SCT`s scoring leads to logical inconsistencies and is likely to reflect construct-irrelevant differences in examinees’ response styles [4]. Also the expert panel judgments might lead to an unintended error of measurement [4]. In this PhD project the following research questions will be addressed: 1. How does a format look like to assess clinical reasoning (similar to the SCT but) with multiple true-false questions or other formats with unambiguous correct answers, and by this address the above mentioned pitfalls in traditional scoring of the SCT? 2. How well does this format fulfill the Ottawa criteria for good assessment, with special regards to educational and catalytic effects [5]? Methods: 1. In a first study it shall be assessed whether designing a new format using multiple true-false items to assess clinical reasoning similar to the SCT-format is arguable in a theoretically and practically sound fashion. For this study focus groups or interviews with assessment experts and students will be undertaken. 2. In an study using focus groups and psychometric data Norcini`s and colleagues Criteria for Good Assessment [5] shall be determined for the new format in a real assessment. Furthermore the scoring method for this new format shall be optimized using real and simulated data.