2 resultados para Pair 16
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: To determine the effect of two pairs of echo times (TEs) for in-phase (IP) and opposed-phase (OP) 3.0-T magnetic resonance (MR) imaging on (a) quantitative analysis prospectively in a phantom study and (b) diagnostic accuracy retrospectively in a clinical study of adrenal tumors, with use of various reference standards in the clinical study. MATERIALS AND METHODS: A fat-saline phantom was used to perform IP and OP 3.0-T MR imaging for various fat fractions. The institutional review board approved this HIPAA-compliant study, with waiver of informed consent. Single-breath-hold IP and OP 3.0-T MR images in 21 patients (14 women, seven men; mean age, 63 years) with 23 adrenal tumors (16 adenomas, six metastases, one adrenocortical carcinoma) were reviewed. The MR protocol involved two acquisition schemes: In scheme A, the first OP echo (approximately 1.5-msec TE) and the second IP echo (approximately 4.9-msec TE) were acquired. In scheme B, the first IP echo (approximately 2.4-msec TE) and the third OP echo (approximately 5.8-msec TE) were acquired. Quantitative analysis was performed, and analysis of variance was used to test for differences between adenomas and nonadenomas. RESULTS: In the phantom study, scheme B did not enable discrimination among voxels that had small amounts of fat. In the clinical study, no overlap in signal intensity (SI) index values between adenomas and nonadenomas was seen (P < .05) with scheme A. However, with scheme B, no overlap in the adrenal gland SI-to-liver SI ratio between adenomas and nonadenomas was seen (P < .05). With scheme B, no overlap in adrenal gland SI index-to-liver SI index ratio between adenomas and nonadenomas was seen (P < .05). CONCLUSION: This initial experience indicates SI index is the most reliable parameter for characterization of adrenal tumors with 3.0-T MR imaging when obtaining OP echo before IP echo. When acquiring IP echo before OP echo, however, nonadenomas can be mistaken as adenomas with use of the SI index value.
Resumo:
Background Tools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures). Results Molecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances. Conclusions 3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at www.gdb.unibe.ch webcite and should provide useful assistance to drug discovery projects.