10 resultados para PYROSEQUENCING(TM)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European trout (Salmo trutta species complex) is genetically very diverse consisting of five distinct mitochondrial lineages that probably originated in the Pleistocene. Here, we describe a novel pyrosequencing protocol to generate two short sequence reads from the mitochondrial control region, which allow the unambiguous identification of all five lineages. The approach was found to be easily transferable between laboratories and should be a valuable tool for the assessment of genetic diversity in trout. Pyrosequencing-based assays for molecular species identification are expected to be generally useful whenever multiple positions in a short DNA sequence need to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The aim of this study is to analyse CDKN2A methylation using pyrosequencing on a large cohort of colorectal cancers and corresponding non-neoplastic tissues. In a second step, the effect of methylation on clinical outcome is addressed. Methods Primary colorectal cancers and matched non-neoplastic tissues from 432 patients underwent CDKN2A methylation analysis by pyrosequencing (PyroMarkQ96). Methylation was then related to clinical outcome, microsatellite instability (MSI), and BRAF and KRAS mutation. Different amplification conditions (35 to 50 PCR cycles) using a range of 0-100% methylated DNA were tested. Results Background methylation was at most 10% with ≥35 PCR cycles. Correlation of observed and expected values was high, even at low methylation levels (0.02%, 0.6%, 2%). Accuracy of detection was optimal with 45 PCR cycles. Methylation in normal mucosa ranged from 0 to >90% in some cases. Based on the maximum value of 10% background, positivity was defined as a ≥20% difference in methylation between tumor and normal tissue, which occurred in 87 cases. CDKN2A methylation positivity was associated with MSI (p = 0.025), BRAF mutation (p < 0.0001), higher tumor grade (p < 0.0001), mucinous histology (p = 0.0209) but not with KRAS mutation. CDKN2A methylation had an independent adverse effect (p = 0.0058) on prognosis. Conclusion The non-negligible CDKN2A methylation of normal colorectal mucosa may confound the assessment of tumor-specific hypermethylation, suggesting that corresponding non-neoplastic tissue should be used as a control. CDKN2A methylation is robustly detected by pyrosequencing, even at low levels, suggesting that this unfavorable prognostic biomarker warrants investigation in prospective studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand and protect ecosystems, local gene pools need to be evaluated with respect to their uniqueness. Cryptic species present a challenge in this context because their presence, if unrecognized, may lead to serious misjudgement of the distribution of evolutionarily distinct genetic entities. In this study, we describe the current geographical distribution of cryptic species of the ecologically important stream amphipod Gammarus fossarum (types A, B and C). We use a novel pyrosequencing assay for molecular species identification and survey 62 populations in Switzerland, plus several populations in Germany and eastern France. In addition, we compile data from previous publications (mainly Germany). A clear transition is observed from type A in the east (Danube and Po drainages) to types B and, more rarely, C in the west (Meuse, Rhone, and four smaller French river systems). Within the Rhine drainage, the cryptic species meet in a contact zone which spans the entire G. fossarum distribution range from north to south. This large-scale geographical sorting indicates that types A and B persisted in separate refugia during Pleistocene glaciations. Within the contact zone, the species rarely co-occur at the same site, suggesting that ecological processes may preclude long-term coexistence. The clear phylogeographical signal observed in this study implies that, in many parts of Europe, only one of the cryptic species is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES It is still debated if pre-existing minority drug-resistant HIV-1 variants (MVs) affect the virological outcomes of first-line NNRTI-containing ART. METHODS This Europe-wide case-control study included ART-naive subjects infected with drug-susceptible HIV-1 as revealed by population sequencing, who achieved virological suppression on first-line ART including one NNRTI. Cases experienced virological failure and controls were subjects from the same cohort whose viraemia remained suppressed at a matched time since initiation of ART. Blinded, centralized 454 pyrosequencing with parallel bioinformatic analysis in two laboratories was used to identify MVs in the 1%-25% frequency range. ORs of virological failure according to MV detection were estimated by logistic regression. RESULTS Two hundred and sixty samples (76 cases and 184 controls), mostly subtype B (73.5%), were used for the analysis. Identical MVs were detected in the two laboratories. 31.6% of cases and 16.8% of controls harboured pre-existing MVs. Detection of at least one MV versus no MVs was associated with an increased risk of virological failure (OR = 2.75, 95% CI = 1.35-5.60, P = 0.005); similar associations were observed for at least one MV versus no NRTI MVs (OR = 2.27, 95% CI = 0.76-6.77, P = 0.140) and at least one MV versus no NNRTI MVs (OR = 2.41, 95% CI = 1.12-5.18, P = 0.024). A dose-effect relationship between virological failure and mutational load was found. CONCLUSIONS Pre-existing MVs more than double the risk of virological failure to first-line NNRTI-based ART.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of upconversion phosphors with higher quantum yield requires a deeper understanding of the detailed energy transfer and upconversion processes between active ions inside the material. Rate equations can model those processes by describing the populations of the energy levels of the ions as a function of time. However, this model presents some drawbacks: energy migration is assumed to be infinitely fast, it does not determine the detailed interaction mechanism (multipolar or exchange), and it only provides the macroscopic averaged parameters of interaction. Hence, a rate equation model with the same parameters cannot correctly predict the time evolution of upconverted emission and power dependence under a wide range of concentrations of active ions. We present a model that combines information about the host material lattice, the concentration of active ions, and a microscopic rate equation system. The extent of energy migration is correctly taken into account because the energy transfer processes are described on the level of the individual ions. This model predicts the decay curves, concentration, and excitation power dependences of the emission. This detailed information can be used to predict the optimal concentration that results in the maximum upconverted emission.