7 resultados para PTCO ELECTRODEPOSITION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three fundamental types of suppressor additives for copper electroplating could be identified by means of potential Transient measurements. These suppressor additives differ in their synergistic and antagonistic interplay with anions that are chemisorbed on the metallic copper surface during electrodeposition. In addition these suppressor chemistries reveal different barrier properties with respect to cupric ions and plating additives (Cl, SPS). While the type-I suppressor selectively forms efficient barriers for copper inter-diffusion on chloride-terminated electrode surfaces we identified a type-II suppressor that interacts non-selectively with any kind of anions chemisorbed on copper (chloride, sulfate, sulfonate). Type-I suppressors are vital for the superconformal copper growth mode in Damascene processing and show an antagonistic interaction with SPS (Bis-Sodium-Sulfopropyl-Disulfide) which involves the deactivation of this suppressor chemistry. This suppressor deactivation is rationalized in terms of compositional changes in the layer of the chemisorbed anions due to the competition of chloride and MPS (Mercaptopropane Sulfonic Acid) for adsorption sites on the metallic copper surface. MPS is the product of the dissociative SPS adsorption within the preexisting chloride matrix on the copper surface. The non-selectivity in the adsorption behavior of the type-II suppressor is rationalized in terms of anion/cation pairing effects of the poly-cationic suppressor and the anion-modified copper substrate. Atomic-scale insights into the competitive Cl/MPS adsorption are gained from in situ STM (Scanning Tunneling Microscopy) using single crystalline copper surfaces as model substrates. Type-III suppressors are a third class of suppressors. In case of type-land type-II suppressor chemistries the resulting steady-state deposition conditions are completely independent on the particular succession of additive adsorption. In contrast to that a strong dependence of the suppressing capabilities on the sequence of additive adsorption ("first comes, first serves" principle) is observed for the type-IIIsuppressor. This behavior:is explained by a suppressor barrier that impedes not only the copper inter-diffusion but also the transport of other additives (e.g. SPS) to the copper surface. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wirelessly controlled magnetic microrobot has been proposed to diagnose and treat pathologies in the posterior segment of the human eye. The robot consists of a magnetic CoNi platform with a conformal coating of functional polymers. Electrodeposition has been the preferred method to fabricate and to functionalize the microrobot. Poly(pyrrole), a widely studied intrinsically conductive polymer has been investigated as a biocompatible coating to reduce biofouling, and as a coating that can release incorporated drugs on demand. The mechanism of redox cycling has been investigated to reduce the stiction of NIH 3T3 fibroblasts onto poly(pyrrole) surfaces. To demonstrate triggered drug release, Rhodamine B has been incorporated into the Ppy matrix as a model drug. Rapid Rhodamine B release is obtained when eddy current losses are induced by alternating magnetic fields on the CoNi substrates underneath these films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A successful bottom-up fill of single Damascene test features is achieved by using a two-component additive package consisting of bis-(sodium-sulfopropyl)-disulfide (SPS) and Imep polymers (polymerizates of imidazole and epichlorohydrin). In addition, a remarkable leveling effect is observed. Clearly, the Imep additive combines bottom-up fill capabilities with leveling characteristics in one single polymer component. These unique hybrid properties of the Imep are rationalized on the basis of an extended N-NDR (N-shaped negative differential resistance) being present in the linear-sweep voltammogram of the SPS/Imep additive system during Cu electrodeposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the oxygen reduction reaction (ORR), the catalytic process occurring at the cathode in fuel cells, on Pt layers prepared by electrodeposition onto an Au substrate. Using a nominal Pt layer by layer deposition method previously proposed, imperfect layers of Pt on Au are obtained. The ORR on deposited Pt layers decreases with increasing Pt thickness. In the submonolayer region, however, the ORR activity is superior to that of bulk Pt. Using density functional theory (DFT) calculations, we correlate the observed activity trend to strain, ligand, and ensemble effects. At submonolayer coverage certain atom configurations weaken the binding energies of reaction intermediates due to a ligand and ensemble effect, thus effectively increasing the ORR activity. At higher Pt coverage the activity is governed by a strain effect, which lowers the activity by decreasing the oxidation potential of water. This study is a nice example of how the influence of strain, ligand, and ensemble effects on the ORR can be deconvoluted.