15 resultados para PROTEIN-FOLDING KINETICS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND & AIMS: Congenital sucrase-isomaltase (SI) deficiency is an autosomal-recessive intestinal disorder characterized by a drastic reduction or absence of sucrase and isomaltase activities. Previous studies have indicated that single mutations underlie individual phenotypes of the disease. We investigated whether compound heterozygous mutations, observed in some patients, have a role in disease pathogenesis. METHODS: We introduced mutations into the SI complementary DNA that resulted in the amino acid substitutions V577G and G1073D (heterozygous mutations found in one group of patients) or C1229Y and F1745C (heterozygous mutations found in another group). The mutant genes were expressed transiently, alone or in combination, in COS cells and the effects were assessed at the protein, structural, and subcellular levels. RESULTS: The mutants SI-V577G, SI-G1073D, and SI-F1745C were misfolded and could not exit the endoplasmic reticulum, whereas SI-C1229Y was transported only to the Golgi apparatus. Co-expression of mutants found on each SI allele in patients did not alter the protein's biosynthetic features or improve its enzymatic activity. Importantly, the mutations C1229Y and F1745C, which lie in the sucrase domains of SI, prevented its targeting to the cell's apical membrane but did not affect protein folding or isomaltase activity. CONCLUSIONS: Compound heterozygosity is a novel pathogenic mechanism of congenital SI deficiency. The effects of mutations in the sucrase domain of SIC1229Y and SIF1745C indicate the importance of a direct interaction between isomaltase and sucrose and the role of sucrose as an intermolecular chaperone in the intracellular transport of SI.
Resumo:
Structural analyses of heterologously expressed mammalian membrane proteins remain a great challenge given that microgram to milligram amounts of correctly folded and highly purified proteins are required. Here, we present a novel method for the expression and affinity purification of recombinant mammalian and in particular human transport proteins in Xenopus laevis frog oocytes. The method was validated for four human and one murine transporter. Negative stain transmission electron microscopy (TEM) and single particle analysis (SPA) of two of these transporters, i.e., the potassium-chloride cotransporter 4 (KCC4) and the aquaporin-1 (AQP1) water channel, revealed the expected quaternary structures within homogeneous preparations, and thus correct protein folding and assembly. This is the first time a cation-chloride cotransporter (SLC12) family member is isolated, and its shape, dimensions, low-resolution structure and oligomeric state determined by TEM, i.e., by a direct method. Finally, we were able to grow 2D crystals of human AQP1. The ability of AQP1 to crystallize was a strong indicator for the structural integrity of the purified recombinant protein. This approach will open the way for the structure determination of many human membrane transporters taking full advantage of the Xenopus laevis oocyte expression system that generally yields robust functional expression.
Resumo:
The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.
Resumo:
In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded alpha1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.
Resumo:
BACKGROUND: Splenic involvement in amyloidosis is rather frequent (5-10%). An atraumatic rupture of the affected spleen is however an extremely rare event. We report on a patient with undiagnosed amyloidosis who underwent emergency splenectomy for atraumatic splenic rupture. METHODS: Review of the literature and identification of 31 patients, including our own case report, with atraumatic splenic rupture in amyloidosis. Analysis of the clinical presentation, the surgical management, the nomenclature and definition of predisposing factors of splenic rupture. RESULTS: We identified 15 women and 16 men (mean age 53.3 +/- 12.4 years; median 52, range: 27-82 years) with an atraumatic splenic rupture. Easy skin bruisability and factor X deficiency were detected in four (13%) and five patients (16%), respectively. The diagnosis of splenic rupture was made either by computed tomography (n = 12), ultrasound (n = 5), exploratory laparotomy (n = 9) or autopsy (n = 4). All patients underwent surgery (n = 27) or autopsy (n = 4). Amyloidosis was previously diagnosed in nine patients (29%). In the remaining 22 patients (71%), the atraumatic splenic rupture represented the initial manifestation of amyloidosis. Twenty-five patients (81%) suffered from primary (AL) and four patients (13%) from secondary amyloidosis (AA). In two patients, the type of amyloidosis was not specified. A moderate splenomegaly was a common feature (68%) and the characteristic intraoperative finding was an extended subcapsular hematoma with a limited parenchymal laceration (65%). In five patients with known amyloidosis, the atraumatic splenic rupture was closely associated with autologous stem-cell transplantation (ASCT) (16%). Three patients were suffering from multiple myeloma (10%). A biopsy-proven amyloidotic liver involvement was present in 14 patients (45%), which lead to atraumatic liver rupture in two patients. The splenic rupture related 30-day mortality was 26% (8/31). CONCLUSIONS: Atraumatic splenic rupture in amyloidosis is associated with a high 30-day mortality. It occurs predominantly in patients with previously undiagnosed amyloidosis. A moderate splenomegaly, coagulation abnormalities (easy skin bruisability, factor X deficiency) and treatment of amyloidosis with ASCT are considered predisposing factors for an atraumatic splenic rupture.
Resumo:
Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy.
Resumo:
Oxygen is the basic molecule which supports life and it truly is “god's gift to life.” Despite its immense importance, research on “oxygen biology” has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word “hypoxia.” Scientists have focused on hypoxia-induced transcriptomics and molecular–cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Resumo:
Calreticulin (CALR) is a highly conserved, multifunctional protein involved in a variety of cellular processes including the maintenance of intracellular calcium homeostasis, proper protein folding, differentiation and immunogenic cell death. More recently, a crucial role for CALR in the pathogenesis of certain hematologic malignancies was discovered: in clinical subgroups of acute myeloid leukemia, CALR overexpression mediates a block in differentiation, while somatic mutations have been found in the majority of patients with myeloproliferative neoplasms with nonmutated Janus kinase 2 gene (JAK2) or thrombopoietin receptor gene (MPL). However, the mechanisms underlying CALR promoter activation have insufficiently been investigated so far. By dissecting the core promoter region, we could identify a functional TATA-box relevant for transcriptional activation. In addition, we characterized two evolutionary highly conserved cis-regulatory modules (CRMs) within the proximal promoter each composed of one binding site for the transcription factors SP1 and SP3 as well as for the nuclear transcription factor Y (NFY) and we verified binding of these factors to their cognate sites in vitro and in vivo.
Resumo:
Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.
Resumo:
Efficient delivery of growth factors from carrier biomaterials depends critically on the release kinetics of the proteins that constitute the carrier. Immobilizing growth factors to calcium phosphate ceramics has been attempted by direct adsorption and usually resulted in a rapid and passive release of the superficially adherent proteins. The insufficient retention of growth factors limited their bioavailability and their efficacy in the treatment of bone regeneration. In this study, a coprecipitation technique of proteins and calcium phosphate was employed to modify the delivery of proteins from biphasic calcium phosphate (BCP) ceramics. To this end, tritium-labeled bovine serum albumin ([(3)H]BSA) was utilized as a model protein to analyze the coprecipitation efficacy and the release kinetics of the protein from the carrier material. Conventional adsorption of [(3)H]BSA resulted in a rapid and passive release of the protein from BCP ceramics, whereas the coprecipitation technique effectively prevented the burst release of [(3)H]BSA. Further analysis of the in vitro kinetics demonstrated a sustained, cell-mediated release of coprecipitated [(3)H]BSA from BCP ceramics induced by resorbing osteoclasts. The coprecipitation technique described herein, achieved a physiologic-like protein release, by incorporating [(3)H]BSA into its respective carriers, rendering it a promising tool in growth factor delivery for bone healing.
Resumo:
This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.
Resumo:
Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.
Resumo:
The antiinflammatory agent curcumin (diferuloylmethane) has a potential to mitigate cancer therapy-induced mucositis. We assessed the in vitro extent of its bactericidal activity and determined the kinetics of its antiinflammatory effect on pharyngeal cells. Bactericidal activity was assessed using the LIVE/DEAD® Kit after 4 h of exposure to curcumin (50-200 μM) in 18 oropharyngeal species commonly associated with bacteremia in febrile neutropenia. Moraxella catarrhalis or its outer membrane vesicles were used to determine the inhibitory effect of curcumin on bacteria-induced proinflammatory activity as determined by cytokine release into the supernatant of Detroit 562 pharyngeal cells using the Luminex® xMAP® technology. Curcumin exerted a concentration-dependent bactericidal effect on all 18 species tested. After 4 h at 200 μM, 12 species tested were completely killed. Preincubation of Detroit cells with 200 μM curcumin for 5 to 60 min resulted in complete suppression of the release of tumor necrosis factor-α, interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1, granulocyte macrophage-colony stimulating factor, and vascular endothelial growth factor. Fibroblast growth factor-2 and interferon-γ were not affected. Repetitive exposure to curcumin resulted in repetitive suppression of cytokine/chemokine expression lasting from 4 to 6 h. Through reduction of oral microbial density as well as suppression of inflammation cascades curcumin may prevent cancer therapy-induced oral mucositis, e.g., when applied as multiple daily mouth washes.
Resumo:
Type 1 diabetes is associated with abnormalities of the growth hormone (GH)-IGF-I axis. Such abnormalities include decreased circulating levels of IGF-I. We studied the effects of IGF-I therapy (40 microg x kg(-1) x day(-1)) on protein and glucose metabolism in adults with type 1 diabetes in a randomized placebo-controlled trial. A total of 12 subjects participated, and each subject was studied at baseline and after 7 days of treatment, both in the fasting state and during a hyperinsulinemic-euglycemic amino acid clamp. Protein and glucose metabolism were assessed using infusions of [1-13C]leucine and [6-6-2H2]glucose. IGF-I administration resulted in a 51% rise in circulating IGF-I levels (P < 0.005) and a 56% decrease in the mean overnight GH concentration (P < 0.05). After IGF-I treatment, a decrease in the overnight insulin requirement (0.26+/-0.07 vs. 0.17+/-0.06 U/kg, P < 0.05) and an increase in the glucose infusion requirement were observed during the hyperinsulinemic clamp (approximately 67%, P < 0.05). Basal glucose kinetics were unchanged, but an increase in insulin-stimulated peripheral glucose disposal was observed after IGF-I therapy (37+/-6 vs. 52+/-10 micromol x kg(-1) x min(-1), P < 0.05). IGF-I administration increased the basal metabolic clearance rate for leucine (approximately 28%, P < 0.05) and resulted in a net increase in leucine balance, both in the basal state and during the hyperinsulinemic amino acid clamp (-0.17+/-0.03 vs. -0.10+/-0.02, P < 0.01, and 0.25+/-0.08 vs. 0.40+/-0.06, P < 0.05, respectively). No changes in these variables were recorded in the subjects after administration of placebo. These findings demonstrated that IGF-I replacement resulted in significant alterations in glucose and protein metabolism in the basal and insulin-stimulated states. These effects were associated with increased insulin sensitivity, and they underline the major role of IGF-I in protein and glucose metabolism in type 1 diabetes.
Resumo:
The purpose of this study was to examine whether variability in the shape of dendritic spines affects protein movement within the plasma membrane. Using a combination of confocal microscopy and the fluorescence loss in photobleaching technique in living hippocampal CA1 pyramidal neurons expressing membrane-linked GFP, we observed a clear correlation between spine shape parameters and the diffusion and compartmentalization of membrane-associated proteins. The kinetics of membrane-linked GFP exchange between the dendritic shaft and the spine head compartment were slower in dendritic spines with long necks and/or large heads than in those with short necks and/or small heads. Furthermore, when the spine area was reduced by eliciting epileptiform activity, the kinetics of protein exchange between the spine compartments exhibited a concomitant decrease. As synaptic plasticity is considered to involve the dynamic flux by lateral diffusion of membrane-bound proteins into and out of the synapse, our data suggest that spine shape represents an important parameter in the susceptibility of synapses to undergo plastic change.