28 resultados para PROTEASE-ACTIVATED RECEPTORS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venoms are very complex mixtures of biologically active proteins and peptides that may affect hemostasis in many ways, by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. They have been classified into various families, including serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. Venom proteins affect platelet function in particular by binding to and blocking or clustering and activating receptors or by cleaving receptors or von Willebrand factor. They may also activate protease-activated receptors or modulate ADP release or thromboxane A(2) formation. L-amino acid oxidases activate platelets by producing H(2)O(2). Many of these purified components are valuable tools in platelet research, providing new information about receptor function and signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venoms are complex mixtures of biologically active proteins and peptides. Many of them affect hemostasis by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. Based on sequence, these snake venom components have been classified into various families, such as serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. For almost every factor involved in coagulation or fibrinolysis there is a venom protein that can activate or inactivate it. Venom proteins affect platelet function by binding or degrading vWF or platelet receptors, activating protease-activated receptors or modulating ADP release and thromboxane A2 formation. Some venom enzymes cleave key basement membrane components and directly affect capillary blood vessels to cause hemorrhaging. L-Amino acid oxidases activate platelets via H2O2 production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In skin, vitamin E acts as the predominant lipophilic antioxidant with a protective function against irradiation and oxidative stress. In addition to that, vitamin E can also modulate signal transduction and gene expression. To study whether the four natural tocopherol analogues (alpha-, beta-, gamma-, delta-tocopherol) can influence transcriptional activity by modulating the activity of nuclear receptors, a human keratinocytes cell line (NCTC 2544) was transfected with plasmids containing the luciferase reporter gene under control by direct repeat elements (DR1-DR4), representing binding sites for four different classes of nuclear receptors. In this model, the tocopherols positively modulated only the reporter construct containing a consensus element for peroxisome proliferator-activated receptors (PPARs). The induction was strongest with gamma-tocopherol and was most likely the direct consequence of stimulation of PPARgamma protein expression in keratinocytes. Vitamin E treatment also led to increased expression of a known PPARgamma target gene involved in terminal keratinocytes differentiation, the transglutaminase-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of the platelet glycoprotein (GP) Ib-V-IX receptor in thrombin activation of platelets has remained controversial although good evidence suggests that blocking this receptor affects platelet responses to this agonist. The mechanism of expression of procoagulant activity in response to platelet agonists is also still obscure. Here, the binding site for thrombin on GPIb is shown to have a key role in the exposure of negatively charged phospholipids on the platelet surface and thrombin generation, in response to thrombin, which also requires protease-activated receptor-1, GPIIb-IIIa, and platelet-platelet contact. Von Willebrand factor binding to GPIb is not essential to initiate development of platelet procoagulant activity. Inhibition of fibrinogen binding to GPIIb-IIIa also failed to block platelet procoagulant activity. Both heparin and low molecular weight heparin block thrombin-induced platelet procoagulant activity, which may account for part of their clinical efficacy. This study demonstrates a new, critical role for platelet GPIb in hemostasis, showing that platelet activation and coagulation are tightly interwoven, which may have implications for alternative therapies for thrombotic diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM) generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggest a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro. STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR, and fluorescence microscopy. STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL)-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR) signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation was blocked. Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases. METHODS: sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. In vitro studies were performed to investigate which factors regulate sCD14 release and mCD14 expression. RESULTS: sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. In vitro, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition. CONCLUSIONS: This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzodiazepines act at the major isoforms of GABA type A receptors where they potentiate the current evoked by the agonist GABA. The underlying mechanism of this potentiation is poorly understood, but hypothesized to be related to the mechanism that links agonist binding to channel opening in these ligand activated ion channels. The loop F of the ?(1) and the ?(2) subunit have been implicated in channel gating, and loop F of the ?(2) subunit in the modulation by benzodiazepines. We have identified the conservative point mutation Y168F located N-terminally of loop F in the ?(1) subunit that fails to affect agonist properties. Interestingly, it disrupts modulation by benzodiazepines, but leaves high affinity binding to the benzodiazepine binding site intact. Modulation by barbiturates and neurosteroids is also unaffected. Residue ?(1) Y168 is not located either near the binding pockets for GABA, or for benzodiazepines, or close to the loop F of the ?(2) subunit. Our results support the fact, that broader regions of ligand gated receptors are conformationally affected by the binding of benzodiazepines. We infer that also broader regions could contribute to signaling from GABA agonist binding to channel opening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are key receptors of the innate immune system which are expressed on immune and nonimmune cells. They are activated by both pathogen-associated molecular patterns and endogenous ligands. Activation of TLRs culminates in the release of proinflammatory cytokines, chemokines, and apoptosis. Ischaemia and ischaemia/reperfusion (I/R) injury are associated with significant inflammation and tissue damage. There is emerging evidence to suggest that TLRs are involved in mediating ischaemia-induced damage in several organs. Critical limb ischaemia (CLI) is the most severe form of peripheral arterial disease (PAD) and is associated with skeletal muscle damage and tissue loss; however its pathophysiology is poorly understood. This paper will underline the evidence implicating TLRs in the pathophysiology of cerebral, renal, hepatic, myocardial, and skeletal muscle ischaemia and I/R injury and discuss preliminary data that alludes to the potential role of TLRs in the pathophysiology of skeletal muscle damage in CLI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions have been explained by the hapten concept, according to which a small chemical compound is too small to be recognized by the immune system. Only after covalently binding to an endogenous protein the immune system reacts to this so called hapten-carrier complex, as the larger molecule (protein) is modified, and thus immunogenic for B and T cells. Consequently, a B and T cell immune response might develop to the drug with very heterogeneous clinical manifestations. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the MHC-peptide complex in order to trigger an immune response. Rather, some drugs may bind directly and reversibly to immune receptors like the major histocompatibility complex (MHC) or the T cell receptor (TCR), thereby stimulating the cells similar to a pharmacological activation of other receptors. This concept has been termed pharmacological interaction with immune receptors the (p-i) concept. While the exact mechanism is still a matter of debate, non-covalent drug presentation clearly leads to the activation of drug-specific T cells as documented for various drugs (lidocaine, sulfamethoxazole (SMX), lamotrigine, carbamazepine, p-phenylendiamine, etc.). In some patients with drug hypersensitivity, such a response may occur within hours even upon the first exposure to the drug. Thus, the reaction to the drug may not be due to a classical, primary response, but rather be mediated by stimulating existing, pre-activated, peptide-specific T cells that are cross specific for the drug. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the peculiar nature of many drug hypersensitivity reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After birth the development of appropriate detoxification mechanisms is important. Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor-alpha (PPARalpha), retinoid receptors (RAR, RXR), and NR target genes are involved in the detoxification of exogenous and endogenous substances. We quantified abundances of hepatic mRNA of NR and several NR target genes (cytochromes, CYP; cytochrome P450 reductase, CPR; UDP-glucuronosyl transferase, UDP) in calves at different ages. Gene expression was quantified by real-time RT-PCR. Abundance of mRNA of CAR and PXR increased from low levels at birth in pre-term calves (P0) and full-term calves (F0) to higher levels in 5-day-old calves (F5) and in 159-day-old veal calves (F159), whereas mRNA levels of PPARalpha did not exhibit significant ontogenetic changes. RARbeta mRNA levels were higher in F5 and F159 than in F0, whereas no age differences were observed for RARalpha levels. Levels of RXRalpha and RXRbeta mRNA were lower in F5 than in P0 and F0. Abundance of CYP2C8 and CYP3A4 increased from low levels in P0 and F0 to higher levels in F5 and to highest levels in F159. Abundance of CPR was transiently decreased in F0 and F5 calves. Levels of UGT1A1 mRNA increased from low levels in P0 and F0 to maximal level in F5 and F159. In conclusion, mRNA levels of NR and NR target genes exhibited ontogenetic changes that are likely of importance for handling of xeno- and endobiotics with increasing age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of platelets as inflammatory cells is demonstrated by the fact that they can release many growth factors and inflammatory mediators, including chemokines, when they are activated. The best known platelet chemokine family members are platelet factor 4 (PF4) and beta-thromboglobulin (beta-TG), which are synthesized in megakaryocytes, stored as preformed proteins in alpha-granules and released from activated platelets. However, platelets also contain many other chemokines such as interleukin-8 (IL-8), growth-regulating oncogene-alpha(GRO-alpha), epithelial neutrophil-activating protein 78 (ENA-78), regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha), and monocyte chemotactic protein-3 (MCP-3). They also express chemokine receptors such as CCR4, CXCR4, CCR1 and CCR3. Platelet activation is a feature of many inflammatory diseases such as heparin-induced thrombocytopenia, acquired immunodeficiency syndrome, and congestive heart failure. Substantial amounts of PF4, beta-TG and RANTES are released from platelets on activation, which may occur during storage. Although very few data are available on the in vivo effects of transfused chemokines, it has been suggested that the high incidence of adverse reactions often observed after platelet transfusions may be attributed to the chemokines present in the plasma of stored platelet concentrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many peptide hormone receptors are over-expressed in human cancer, permitting an in vivo targeting of tumors for diagnostic and therapeutic purposes. NPY receptors are novel and promising candidates in this field. Using in vitro receptor autoradiography, Y1 and Y2 receptors have been found to be expressed in breast carcinomas, adrenal gland and related tumors, renal cell carcinomas, and ovarian cancers in both tumor cells and tumor-associated blood vessels. Pathophysiologically, tumoral NPY receptors may be activated by endogenous NPY released from intratumoral nerve fibers or tumor cells themselves, and mediate NPY effects on tumor cell proliferation and tumoral blood supply. Clinically, tumoral NPY receptors may be targeted with NPY analogs coupled with adequate radionuclides or cytotoxic agents for a scintigraphic tumor imaging and/or tumor therapy.