39 resultados para PROMOTER HYPERMETHYLATION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chromosomal region 17p13.3 is frequently deleted or epigenetically silenced in a variety of human cancers. It includes the hypermethylated in cancer 1 (HIC1) gene placed telomerically to the p53 tumour suppressor gene. HIC1 encodes a transcriptional repressor, and its targets identified to date are genes involved in proliferation, tumour growth and angiogenesis. In addition, HIC1 functionally cooperates with p53 to suppress cancer development. Frequent allelic loss at position 17p13.1 in human cancers often points to mutations of the tumour suppressor p53. However, in a variety of cancer types, allelic loss of the short arm of chromosome 17 may hit regions distal to p53 and, interestingly, without leading to p53 mutations. Furthermore, the neighbouring region 17p13.3 often shows loss of heterozygosity or DNA hypermethylation in various types of solid tumours and leukaemias. In line with this concept, Wales et al. described a new potential tumour suppressor in this region and named it hypermethylated in cancer 1 (HIC1). Further, it was shown that in the majority of cases hypermethylation of this chromosomal region leads to epigenetic inactivation of HIC1. A role for HIC1 in tumour development is further supported by a mouse model, since various spontaneous, age- and gender-specific malignant tumours occur in heterozygous Hic1+/- knockout mice. Furthermore, exogenously delivered HIC1 leads to a significant decrease in clonogenic survival in cancer cell lines. This review highlights the role of HIC1 inactivation in solid tumours and particularly in leukaemia development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The activity of dihydropyrimidine dehydrogenase (DPD), the key enzyme of pyrimidine catabolism, is thought to be an important determinant for the occurrence of severe toxic reactions to 5-fluorouracil (5-FU), which is one of the most commonly prescribed chemotherapeutic agents for the treatment of solid cancers. Genetic variation in the DPD gene (DPYD) has been proposed as a main factor for variation in DPD activity in the population. However, only a small proportion of severe toxicities in 5-FU based chemotherapy can be explained with such rare deleterious DPYD mutations resulting in severe enzyme deficiencies. Recently, hypermethylation of the DPYD promoter region has been proposed as an alternative mechanism for DPD deficiency and thus as a major cause of severe 5-FU toxicity. METHODS: Here, the prognostic significance of this epigenetic marker with respect to severe 5-FU toxicity was assessed in 27 cancer patients receiving 5-FU based chemotherapy, including 17 patients experiencing severe toxic side effects following drug administration, none of which were carriers of a known deleterious DPYD mutation, and ten control patients. The methylation status of the DPYD promoter region in peripheral blood mononuclear cells was evaluated by analysing for each patient between 19 and 30 different clones of a PCR-amplified 209 base pair fragment of the bisulfite-modified DPYD promoter region. The fragments were sequenced to detect bisulfite-induced, methylation-dependent sequence differences. RESULTS: No evidence of DPYD promoter methylation was observed in any of the investigated patient samples, whereas in a control experiment, as little as 10% methylated genomic DNA could be detected. CONCLUSION: Our results indicate that DYPD promoter hypermethylation is not of major importance as a prognostic factor for severe toxicity in 5-FU based chemotherapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND/AIMS O(6)-methylguanine-methyltransferase (MGMT) is an important enzyme of DNA repair. MGMT promoter methylation is detectable in a subset of pancreatic neuroendocrine neoplasms (pNEN). A subset of pNEN responds to the alkylating agent temozolomide (TMZ). We wanted to correlate MGMT promoter methylation with MGMT protein loss in pNEN, correlate the findings with clinico-pathological data and determine the role of MGMT to predict response to TMZ chemotherapy. METHODS We analysed a well-characterized collective of 141 resected pNEN with median follow-up of 83 months for MGMT protein expression and promoter methylation using methylation-specific PCR (MSP). A second collective of 10 metastasized, pretreated and progressive patients receiving TMZ was used to examine the predictive role of MGMT by determining protein expression and promoter methylation using primer extension-based quantitative PCR. RESULTS In both collectives there was no correlation between MGMT protein expression and promoter methylation. Loss of MGMT protein was associated with an adverse outcome, this prognostic value, however, was not independent from grade and stage in multivariate analysis. Promoter hypermethylation was significantly associated with response to TMZ. CONCLUSION Loss of MGMT protein expression is associated with adverse outcome in a surgical series of pNET. MGMT promoter methylation could be a predictive marker for TMZ chemotherapy in pNEN, but further, favourably prospective studies will be needed to confirm this result and before this observation can influence clinical routine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

microRNA-223 (miR-223) can trigger normal granulopoiesis. miR-223 expression is regulated by two distinct CEBPA (CCAAT/enhancer binding protein-alpha) sites. Here, we report that miR-223 is largely suppressed in cells from acute myeloid leukemia (AML) patients. By sequencing, we found that miR-223 suppression in AML is not caused by DNA sequence alterations, nor is it mediated by promoter hypermethylation. The analysis of the individual contribution of both CEBPA sites to miR-223 regulation identified the site upstream of the miR-223 primary transcript as the predominant regulatory element. Our results suggest that miR-223 suppression in AML is caused by impaired miR-223 upstream factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hallmark of acute myeloid leukaemia (AML) is a block in differentiation caused by deregulated gene expression. The tumour suppressor Hypermethylated In Cancer 1 (HIC1) is a transcriptional repressor, which is epigenetically silenced in solid cancers. HIC1 mRNA expression was found to be low in 128 patient samples of AML and CD34+ progenitor cells when compared with terminally differentiated granulocytes. HIC1 mRNA was induced in a patient with t(15;17)-positive acute promyelocytic leukaemia receiving all-trans retinoic acid (ATRA) therapy. We therefore investigated whether HIC1 plays a role in granulocytic differentiation and whether loss of function of this gene might contribute to the differentiation block in AML. We evaluated HIC1 mRNA levels in HL-60 and U-937 cells upon ATRA-induced differentiation and in CD34+ progenitor cells after granulocyte colony-stimulating factor-induced differentiation. In both models of granulocytic differentiation, we observed significant HIC1 induction. When HIC1 mRNA was suppressed in HL-60 cells using stably expressed short hairpin RNA targeting HIC1, granulocytic differentiation was altered as assessed by CD11b expression. Bisulphite sequencing of GC-rich regions (CpG islands) in the HIC1 promoter provided evidence that the observed suppression in HL-60 cells was not because of promoter hypermethylation. Our findings indicate a role for the tumour suppressor gene HIC1 in granulocytic differentiation. Low expression of HIC1 may very well contribute to pathogenic events in leukaemogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: MEN1 gene alterations have been implicated in lung carcinoids, but their effect on gene expression and disease outcome is unknown. Objective: Our objective was to analyze MEN1 gene and expression anomalies in lung neuroendocrine neoplasms and their correlations with clinicopathologic data and disease outcome. Design: We examined 74 lung neuroendocrine neoplasms including 58 carcinoids and 16 high-grade neuroendocrine carcinomas (HGNECs) for MEN1 mutations (n = 70) and allelic losses (n = 69), promoter hypermethylation (n = 65), and mRNA (n = 74) expression. Results were correlated with disease outcome. Results: MEN1 mutations were found in 7 of 55 (13%) carcinoids and in 1 HGNEC, mostly associated with loss of the second allele. MEN1 decreased expression levels correlated with the presence of mutations (P = .0060) and was also lower in HGNECs than carcinoids (P = .0024). MEN1 methylation was not associated with mRNA expression levels. Patients with carcinoids harboring MEN1 mutation and loss had shorter overall survival (P = .039 and P = .035, respectively) and low MEN1 mRNA levels correlated with distant metastasis (P = .00010) and shorter survival (P = .0071). In multivariate analysis, stage and MEN1 allelic loss were independent predictors of prognosis. Conclusion: Thirteen percent of pulmonary carcinoids harbor MEN1 mutation associated with reduced mRNA expression and poor prognosis. Also in mutation-negative tumors, low MEN1 gene expression correlates with an adverse disease outcome. Hypermethylation was excluded as the underlying mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colorectal cancer is a heterogeneous disease at the histomorphological, clinical and molecular level. Approximately 20% of cases may progress through the "serrated" pathway characterized by BRAF mutation and high-level CpG Island Methylator Phenotype (CIMP). A large subgroup are additionally microsatellite instable (MSI) and demonstrate significant loss of tumor suppressor Cdx2. The aim of this study is to determine the specificity of Cdx2 protein expression and CpG promoter hypermethylation for BRAF(V600E) and high-level CIMP in colorectal cancer. Cdx2, Mlh1, Msh2, Msh6, and Pms2 were analyzed by immunohistochemistry using a multi-punch tissue microarray (TMA; n = 220 patients). KRAS and BRAF(V600E) mutation analysis, CDX2 methylation and CIMP were investigated. Loss of Cdx2 was correlated with larger tumor size (P = 0.0154), right-sided location (P = 0.0014), higher tumor grade (P < 0.0001), more advanced pT (P = 0.0234) and lymphatic invasion (P = 0.0351). Specificity was 100% for mismatch repair (MMR)-deficiency (P < 0.0001), 92.2% (P < 0.0001) for BRAF(V600E) and 91.8% for CIMP-high. Combined analysis of BRAF(V600E) /CIMP identified Cdx2 loss as sensitive (80%) and specific (91.5%) for mutation/high status. These results were validated on eight well-established colorectal cancer cell lines. CDX2 methylation correlated with BRAF(V600E) (P = 0.0184) and with Cdx2 protein loss (P = 0.0028). These results seem to indicate that Cdx2 may play a role in the serrated pathway to colorectal cancer as underlined by strong relationships with BRAF(V600E) , CIMP-high and MMR-deficiency. Whether this protein can only be used as a "surrogate" marker, or is functionally involved in the progression of these tumors remains to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tumor suppressor gene hypermethylated in cancer 1 (HIC1), located on human chromosome 17p13.3, is frequently silenced in cancer by epigenetic mechanisms. Hypermethylated in cancer 1 belongs to the bric à brac/poxviruses and zinc-finger family of transcription factors and acts by repressing target gene expression. It has been shown that enforced p53 expression leads to increased HIC1 mRNA, and recent data suggest that p53 and Hic1 cooperate in tumorigenesis. In order to elucidate the regulation of HIC1 expression, we have analysed the HIC1 promoter region for p53-dependent induction of gene expression. Using progressively truncated luciferase reporter gene constructs, we have identified a p53-responsive element (PRE) 500 bp upstream of the TATA-box containing promoter P0 of HIC1, which is sequence specifically bound by p53 in vitro as assessed by electrophoretic mobility shift assays. We demonstrate that this HIC1 p53-responsive element (HIC1.PRE) is necessary and sufficient to mediate induction of transcription by p53. This result is supported by the observation that abolishing endogenous wild-type p53 function prevents HIC1 mRNA induction in response to UV-induced DNA damage. Other members of the p53 family, notably TAp73beta and DeltaNp63alpha, can also act through this HIC1.PRE to induce transcription of HIC1, and finally, hypermethylation of the HIC1 promoter attenuates inducibility by p53.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusely infiltrating gliomas (WHO grade II-IV) are the most common primary brain tumours in adults. These tumours are not amenable to cure by surgery alone, so suitable biomarkers for adjuvant modalities are required to guide therapeutic decision-making. Epigenetic silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene by promoter methylation has been associated with longer survival of patients with high-grade gliomas who receive alkylating chemotherapy; and molecular testing for the methylation status of the MGMT promoter sequence is regarded as among the most relevant of such markers. We have developed a primer extension-based assay adapted to formalin-fixed paraffin-embedded tissues that enables quantitative assessment of the methylation status of the MGMT promoter. The assay is very sensitive, highly reproducible, and provides valid test results in nearly 100% of cases. Our results indicate that oligodendrogliomas, empirically known to have a relatively favourable prognosis, are also the most homogeneous entities in terms of MGMT promoter methylation. Conversely, astrocytomas, which are more prone to spontaneous progression to higher grade malignancy, are significantly more heterogeneous. In addition, we show that the degree of promoter methylation correlates with the prevalence of loss of heterozygosity on chromosome arm 1p in the oligodendroglioma group, but not the astrocytoma group. Our results may have potentially important implications for clinical molecular diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylation of the MGMT promoter is supposed to be a predictive and prognostic factor in glioblastoma. Whether MGMT promoter methylation correlates with tumor response to temozolomide in low-grade gliomas is less clear. Therefore, we analyzed MGMT promoter methylation by a quantitative methylation-specific PCR in 22 patients with histologically verified low-grade gliomas (WHO grade II) who were treated with temozolomide (TMZ) for tumor progression. Objective tumor response, toxicity, and LOH of microsatellite markers on chromosomes 1p and 19q were analyzed. Histological classification revealed ten oligodendrogliomas, seven oligoastrocytomas, and five astrocytomas. All patients were treated with TMZ 200 mg/m2 on days 1-5 in a 4 week cycle. The median progression-free survival was 32 months. Combined LOH 1p and 19q was found in 14 patients; one patient had LOH 1p alone and one patient LOH 19q alone. The LOH status could not be determined in two patients and was normal in the remaining four. LOH 1p and/or 19q correlated with longer time to progression but not with radiological response to TMZ. MGMT promoter methylation was detectable in 20 patients by conventional PCR and quantitative analysis revealed the methylation status was between 12 and 100%. The volumetric response to chemotherapy analyzed by MRI and time to progression correlated with the level of MGMT promoter methylation. Therefore, our retrospective case series suggests that quantitative methylation-specific PCR of the MGMT promoter predicts radiological response to chemotherapy with TMZ in WHO grade II gliomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Please cite this paper as: PTCH promoter methylation at low level in sporadic basal cell carcinoma analysed by three different approaches. Experimental Dermatology 2010. Abstract: Basal cell carcinoma (BCC) is the most common form of skin cancer. Mutations of the PTCH hallmark gene are detected in about 50-60% of BCCs, which raises the question whether other mechanisms such as promoter methylation can inactivate PTCH. Therefore, we performed methylation analysis of the PTCH promoter in a total of 56 BCCs. The sensitivity of three different methods, including direct bisulphite sequencing PCR, MethyLight and high-resolution melting (HRM), was applied and compared. We found that HRM analysis of DNA from fresh tissue [rather than formalin-fixed and paraffin-embedded tissue (FFPE)] was the most sensitive method to detect methylation. Low-level methylation of the PTCH promoter was detected in five out of 16 analysed BCCs (31%) on DNA from fresh tissue but only in two (13%) samples on short-time stored FFPE DNA from the very same tumors. In contrast, we were unable to detect methylation by HRM on long-time stored DNA in any of the remaining 40 BCC samples. Our data suggest that (i) HRM on DNA extracted from fresh tissue is the most sensitive method to detect methylation and (ii) methylation of the PTCH promoter may only play a minor role in BCC carcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A functional SNP (rs9347683) in the promoter region of the parkin gene had been implicated as a risk factor in older Parkinson's disease (PD) patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor IRF4 is involved in several T-cell-dependent chronic inflammatory diseases. To elucidate the mechanisms for pathological cytokine production in colitis, we addressed the role of the IRF transcription factors in human inflammatory bowel disease (IBD) and experimental colitis.