48 resultados para PROMOTE WALKING
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The present study evaluates the long-term effects of a preschool training in phonological awareness and letter- sound correspondence.
Resumo:
Research on speciation and adaptive radiation has flourished during the past decades, yet factors underlying initiation of reproductive isolation often remain unknown. Parasites represent important selective agents and have received renewed attention in speciation research. We review the literature on parasite-mediated divergent selection in context of ecological speciation and present empirical evidence for three nonexclusive mechanisms by which parasites might facilitate speciation: reduced viability or fecundity of immigrants and hybrids, assortative mating as a pleiotropic by-product of host adaptation, and ecologically-based sexual selection. We emphasise the lack of research on speciation continuums, which is why no study has yet made a convincing case for parasite driven divergent evolution to initiate the emergence of reproductive isolation. We also point interest towards selection imposed by single vs. multiple parasite species, conceptually linking this to strength and multifariousness of selection. Moreover, we discuss how parasites, by manipulating behaviour or impairing sensory abilities of hosts, may change the form of selection that underlies speciation. We conclude that future studies should consider host populations at variable stages of the speciation process, and explore recurrent patterns of parasitism and resistance that could pinpoint the role of parasites in imposing the divergent selection that initiates ecological speciation.
Resumo:
Nitric oxide (NO) mediates a variety of physiological functions in the central nervous system and acts as an important developmental regulator. Striatal interneurons expressing neuronal nitric oxide synthase (nNOS) have been described to be relatively spared from the progressive cell loss in Huntington's disease (HD). We have recently shown that creatine, which supports the phosphagen energy system, induces the differentiation of GABAergic cells in cultured striatal tissue. Moreover, neurotrophin-4/5 (NT-4/5) has been found to promote the survival and differentiation of cultured striatal neurons. In the present study, we assessed the effects of creatine and NT-4/5 on nNOS-immunoreactive (-ir) neurons of E14 rat ganglionic eminences grown for 1 week in culture. Chronic administration of creatine [5mM], NT-4/5 [10ng/ml], or a combination of both factors significantly increased numbers of nNOS-ir neurons. NT-4/5 exposure also robustly increased levels of nNOS protein. Interestingly, only NT-4/5 and combined treatment significantly increased general viability but no effects were seen for creatine supplementation alone. In addition, NT-4/5 and combined treatment resulted in a significant larger soma size and number of primary neurites of nNOS-ir neurons while creatine administration alone exerted no effects. Double-immunolabeling studies revealed that all nNOS-ir cells co-localized with GABA. In summary, our findings suggest that creatine and NT-4/5 affect differentiation and/or survival of striatal nNOS-ir GABAergic interneurons. These findings provide novel insights into the biology of developing striatal neurons and highlight the potential of both creatine and NT-4/5 as therapeutics for HD.
Resumo:
OBJECTIVE: Maintenance of good walking speed is essential to independent living. People with musculoskeletal disease often have reduced walking speed. We investigated determinants of slower walking, other than musculoskeletal disease, that might provide valuable additional targets for therapy. METHODS: We analyzed data from the Somerset and Avon Survey of Health, a community based survey of people aged over 35 years. A total of 2703 participants who reported hip or knee pain at baseline (1994/1995) were studied, and reassessed in 2002-2003; 1696 were available for followup, and walking speed was tested in 1074. Walking speed (m/s) was used as outcome measure. Baseline characteristics, including comorbidities and socioeconomic factors, were tested for their ability to predict reduced walking speed using multiple linear regression analysis. RESULTS: Age, female sex, and immobility at baseline were predictive of slower walking speed. Other independent risk factors included the presence of cataract, low socioeconomic status, intermittent claudication, and other cardiovascular conditions. Having a cataract was associated with a decrease of 0.10 m/s (95% CI 0.03, 0.16). Those in social class V had a walking speed 0.22 m/s (95% CI 0.126, 0.31) slower than those in social class I. CONCLUSION: Comorbidities, age, female sex, and lower socioeconomic position determine walking speed in people with joint pain. Issues such as poor vision and social-economic disadvantage may add to the effect of musculoskeletal disease, suggesting the need for a holistic approach to management of these patients.
Resumo:
The interaction of bovine cells with lipopolysaccharide (LPS) was explored using human embryo kidney (HEK) 293 cell line stably transduced with bovine toll-like receptor-4 (TLR4) alone or in combination with bovine MD-2. These lines and mock-transduced HEK293 cells were tested by flow cytometry for LPS-fluorescein isothiocyanate (LPS-FITC) binding, nuclear factor kappa B (NFkappaB) activation, interleukin-8 (IL-8) production and interferon-beta mRNA expression/interferon (IFN) type I production. Whereas bovine TLR4 was sufficient to promote binding of high concentrations of LPS-FITC, both bovine TLR4 and MD-2 were required for activation by LPS, as assessed by NFkappaB activation and IL-8 production. Induction of IFN bioactivity was not observed in doubly transduced HEK293 cells, and no evidence for IFN-beta mRNA induction in response to LPS was obtained, although cells responded by IFN-beta mRNA expression to stimulation by Sendai virus and poly-inosinic acid-poly-cytidylic acid (poly(I:C)). Cells stably transduced with both bovine TLR4 and bovine MD-2 responded to LPS by IL-8 production, in decreasing order, in the presence of fetal bovine serum (FCS), of human serum, and of human serum albumin (HSA). The reduced activity in the presence of HSA could be restored by the addition of soluble CD14 (sCD14) but not of LPS binding protein (LBP). This is in contrast to macrophages which show a superior response to LPS in the presence of HSA when compared with macrophages stimulated by LPS in the presence of FCS. This suggests that macrophages but not HEK293 cells express factors rendering LPS stimulation serum-independent. Stably double-transduced cells reacted, in decreasing order, to LPS from Rhodobacter sphaeroides, to LPS from Escherichia coli, to synthetic lipd-IVa (compound 406), to diphosphoryl-lipid-A (S. minnesota) and to monophosphoryl-lipid-A (S. minnesota). They failed to react to the murine MD-2/TLR4 ligand taxol. This resembles the reactivity of bovine macrophages with regard to sensitivity (ED(50)) and order of potency but is distinct from the reactivity pattern of other species. This formally establishes that in order to react to LPS, cattle cells require serum factors (e.g. sCD14) and cell-expressed factors such as MD-2 and TLR4. The cell lines described are the first of a series expressing defined pattern recognition receptors (PRR) of bovine origin. They will be useful in the study of the interaction of the bovine TLR4-MD-2 complex and Gram-negative bovine pathogens, e.g. the agents causing Gram-negative bovine mastitis.
Resumo:
Supervised exercise training has been shown to improve walking capacity in several studies of patients with intermittent claudication. However, data on long-term outcome are quite limited. The aim of this prospective study was to evaluate long-term effects of supervised exercise training on walking capacity and quality of life in patients with intermittent claudication. Patients and methods: Sixty-seven consecutive patients with intermittent claudication who completed a supervised 12-week exercise training program were asked for follow up evaluation 39 +/- 20 months after program completion. Pain-free walking distance (PWD) and maximum walking distances (MWD) were assessed by treadmill test and several questionnaires. Results: Forty (60%) patients agreed to participate, 22 (33%) refused participation, and 5 (7%) died during follow-up. PWD and MWD significantly improved at completion of 12-weeks supervised exercise training as compared to baseline (PWD 114 +/- 100 vs. 235 +/- 248, p = 0.002; MWD 297 +/- 273 vs. 474 +/- 359, p = 0.001). Improvement of PWD and MWD could be maintained at follow up (197 +/- 254, p = 0.014; 390 +/- 324, p = 0.035, respectively) with non-smokers showing significantly better sustained PWD and MWD improvement as compared to baseline. Overall, walking capacity correlated with functional status of quality of life. Conclusions: Major findings of this investigation were that improvement in walking capacity is sustained after completion of supervised exercise training program with best results in patients who quitted or never smoked. Improved walking capacity is associated with increased functional status of quality of life.
Resumo:
Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies.