2 resultados para PROGRAMMING-PROBLEMS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present a real-world staff-assignment problem that was reported to us by a provider of an online workforce scheduling software. The problem consists of assigning employees to work shifts subject to a large variety of requirements related to work laws, work shift compatibility, workload balancing, and personal preferences of employees. A target value is given for each requirement, and all possible deviations from these values are associated with acceptance levels. The objective is to minimize the total number of deviations in ascending order of the acceptance levels. We present an exact lexicographic goal programming MILP formulation and an MILP-based heuristic. The heuristic consists of two phases: in the first phase a feasible schedule is built and in the second phase parts of the schedule are iteratively re-optimized by applying an exact MILP model. A major advantage of such MILP-based approaches is the flexibility to account for additional constraints or modified planning objectives, which is important as the requirements may vary depending on the company or planning period. The applicability of the heuristic is demonstrated for a test set derived from real-world data. Our computational results indicate that the heuristic is able to devise optimal solutions to non-trivial problem instances, and outperforms the exact lexicographic goal programming formulation on medium- and large-sized problem instances.
Resumo:
SOMS is a general surrogate-based multistart algorithm, which is used in combination with any local optimizer to find global optima for computationally expensive functions with multiple local minima. SOMS differs from previous multistart methods in that a surrogate approximation is used by the multistart algorithm to help reduce the number of function evaluations necessary to identify the most promising points from which to start each nonlinear programming local search. SOMS’s numerical results are compared with four well-known methods, namely, Multi-Level Single Linkage (MLSL), MATLAB’s MultiStart, MATLAB’s GlobalSearch, and GLOBAL. In addition, we propose a class of wavy test functions that mimic the wavy nature of objective functions arising in many black-box simulations. Extensive comparisons of algorithms on the wavy testfunctions and on earlier standard global-optimization test functions are done for a total of 19 different test problems. The numerical results indicate that SOMS performs favorably in comparison to alternative methods and does especially well on wavy functions when the number of function evaluations allowed is limited.