6 resultados para PP2

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional disruption of dendritic cells (DC) is an important strategy for viral pathogens to evade host defences. In this context, porcine circovirus type 2 (PCV2), a single-stranded DNA virus, impairs plasmacytoid DC (pDC) and conventional DC activation by certain viruses or Toll-like receptor (TLR) ligands. This inhibitory capacity is associated with the viral DNA, but the impairment does not affect all signalling cascades; TLR7 ligation by small chemical molecules will still induce interleukin-6 (IL-6) and tumour necrosis factor-α secretion, but not interferon-α or IL-12. In this study, the molecular mechanisms by which silencing occurs were investigated. PP2, a potent inhibitor of the Lyn and Hck kinases, produced a similar profile to the PCV2 DNA interference with cytokine secretion by pDC, efficiently inhibiting cell activation induced through TLR9, but not TLR7, ligation. Confocal microscopy and cytometry analysis strongly suggested that PCV2 DNA impairs actin polymerization and endocytosis in pDC and monocyte-derived DC, respectively. Altogether, this study delineates for the first time particular molecular mechanisms involved in PCV2 interference with DC danger recognition, which may be responsible for the virus-induced immunosuppression observed in infected pigs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a recombinant mouse pre-B cell line (TonB210.1, expressing Bcr/Abl under the control of an inducible promoter) and several human leukemia cell lines to study the effect of high tyrosine kinase activity on G protein-coupled receptor (GPCR) agonist-stimulated cellular Ca(2+) release and store-operated Ca(2+) entry (SOCE). After induction of Bcr/Abl expression, GPCR-linked SOCE increased. The effect was reverted in the presence of the specific Abl inhibitor imatinib (1microM) and the Src inhibitor PP2 (10microM). In leukemic cell lines constitutively expressing high tyrosine kinase activity, Ca(2+) transients were reduced by imatinib and/or PP2. Ca(2+) transients were enhanced by specific inhibitors of PKC subtypes and this effect was amplified by tyrosine kinase inhibition in Bcr/Abl expressing TonB210.1 and K562 cells. Under all conditions Ca(2+) transients were essentially blocked by the PKC activator PMA. In Bcr/Abl expressing (but not in native) TonB210.1 cells, tyrosine kinase inhibitors enhanced PKCalpha catalytic activity and PKCalpha co-immunoprecipitated with Bcr/Abl. Unlike native TonB210.1 cells, Bcr/Abl expressing cells showed a high rate of cell death if Ca(2+) influx was reduced by complexing extracellular Ca(2+) with BAPTA. Our data suggest that tonic inhibition of PKC represents a mechanism by which high tyrosine kinase activity can enhance cellular Ca(2+) transients and thus exert profound effects on the proliferation, apoptosis and chemotaxis of leukemic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases play a critical role in embryonic patterning and angiogenesis. In the adult, they are involved in carcinogenesis and pathological neovascularization. However, the mechanisms underlying their role in tumor formation and metastasis remain to be defined. Here, we demonstrated that stimulation of EphB1 with ephrinB1/Fc led to a marked downregulation of EphB1 protein, a process blocked by the lysosomal inhibitor bafilomycin. Following ephrinB1 stimulation, the ubiquitin ligase Cbl was recruited by EphB1 and then phosphorylated. Both Cbl phosphorylation and EphB1 ubiquitination were blocked by the Src inhibitor PP2. Overexpression of wild-type Cbl, but not of 70Z mutant lacking ligase activity, enhanced EphB1 ubiquitination and degradation. This negative regulation required the tyrosine kinase activity of EphB1 as kinase-dead EphB1-K652R was resistant to Cbl. Glutathione S-transferase binding experiments showed that Cbl bound to EphB1 through its tyrosine kinase-binding domain. In aggregate, we demonstrated that Cbl induces the ubiquitination and lysosomal degradation of activated EphB1, a process requiring EphB1 and Src kinase activity. To our knowledge, this is the first study dissecting the molecular mechanisms leading to EphB1 downregulation, thus paving the way to new means of modulating their angiogenic and tumorigenic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deregulated activation of the Src tyrosine kinase and heightened Id1 expression are independent mediators of aggressive tumor biology. The present report implicates Src signaling as a critical regulator of Id1 gene expression. Microarray analyses showed that Id family genes were among the most highly down-regulated by incubation of A549 lung carcinoma cells with the small-molecule Src inhibitor AZD0530. Id1 transcript and protein levels were potently reduced in a dose-dependent manner concomitantly with the reduction of activated Src levels. These effects were conserved across a panel of lung, breast, prostate, and colon cancer cell lines and confirmed by the ability of PP2, Src siRNA, and Src-blocking peptides to suppress Id1 expression. PP2, AZD0530, and dominant-negative Src abrogated Id1 promoter activity, which was induced by constitutively active Src. The Src-responsive region of the Id1 promoter was mapped to a region 1,199 to 1,360 bps upstream of the translation start site and contained a Smad-binding element. Src was also required for bone morphogenetic protein-2 (BMP-2)-induced Id1 expression and promoter activity, was moderately activated by BMP-2, and complexed with Smad1/5. Conversely, Src inhibitors blocked Smad1/5 nuclear translocation and binding to the Src-responsive region of the Id1 promoter. Consistent with a role for Src and Id1 in cancer cell invasion, Src inhibitors and Id1 siRNA decreased cancer cell invasion, which was increased by Id1 overexpression. Taken together, these results reveal that Src positively interacts with the BMP-Smad-Id pathway and provide new ways for targeted inhibition of Id1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between Eph receptors and their membrane-bound ligands (ephrins) are of critical importance for key developmental processes such as boundary formation or vascular development. Their downstream signaling pathways are intricate and heterogeneous at several levels, the combined effect being a highly complex and flexible system. Here we demonstrate that activated EphB1 induces tyrosine phosphorylation of the focal adhesion protein paxillin at Tyr-31 and Tyr-118 and is recruited to paxillin-focal adhesion kinase (FAK) complexes. Pretreatment with the specific Src inhibitor PP2, or expression of dominant-negative, kinase-dead c-Src abrogates EphB1-induced tyrosine phosphorylation of paxillin. Cells transfected with the paxillin mutant Y31F/Y118F displayed a reduced migration in response to ephrin B2 stimulation. Furthermore, expression of an LD4 deletion mutant (paxillin DeltaLD4) significantly reduces EphB1-paxillin association, paxillin tyrosine phosphorylation, as well as EphB1-dependent cell migration. Finally, mutation of the Nck-binding site of EphB1 (Y594F) interrupts the interaction between Nck, paxillin, and EphB1. These data suggest a model in which ligand-activated EphB1 forms a signaling complex with Nck, paxillin, and focal adhesion kinase and induces tyrosine phosphorylation of paxillin in a c-Src-dependent manner to promote cell migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.