30 resultados para POLY(-(D)-BETA-HYDROXYBUTYRIC ACID)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The purpose of this study was to investigate variations in hepatic regulation of metabolism during the dry period, after parturition, and in early lactation in dairy cows. For this evaluation, cows were divided into 2 groups based on the plasma concentration of beta-hydroxybutyric acid (BHBA) in wk 4 postpartum (PP; group HB, BHBA >0.75 mmol/L; group LB, BHBA <0.75 mmol/L, respectively). Liver biopsies were obtained from 28 cows at drying off (mean 59 +/- 8 d antepartum), on d 1, and in wk 4 and 14 PP. Blood samples were collected every 2 wk during this entire period. Liver samples were analyzed for mRNA abundance of genes related to carbohydrate metabolism (pyruvate carboxylase, PC; phosphoenolpyruvate carboxykinase, PEPCK; citrate synthase, CS), fatty acid biosynthesis (ATP citrate lyase, ACLY) and oxidation (acyl-CoA synthetase long-chain, ACSL; carnitine palmitoyltransferase 1A, CPT 1A; carnitine palmitoyltransferase 2, CPT 2; acyl-coenzyme A dehydrogenase very long chain, ACADVL), cholesterol biosynthesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, HMGCS1), ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2, HMGCS2), and of genes encoding the transcription factors peroxisome proliferator-activated receptor alpha (PPARalpha), peroxisome proliferator-activated receptor gamma (PPARgamma), and sterol regulatory element binding factor 1 (SREBF1). Blood plasma was assayed for concentrations of glucose, BHBA, nonesterified fatty acids, cholesterol, triglycerides, insulin, insulin-like growth factor-I, and thyroid hormones. In both groups, plasma parameters followed a pattern usually observed in dairy cows. However, changes were moderate and the energy balance in cows turned positive in wk 7 PP for both groups. Additionally, the energy balance and milk yield were similar for both groups after parturition onwards. Significant group effects were found at drying off, when plasma concentrations of triglycerides were higher in LB than in HB, and in wk 4 PP, when plasma concentrations of glucose and IGF-I were lower in HB than in LB. Similarly, moderate changes in mRNA expression of hepatic genes between the different time points were observed, although HB cows showed more adaptive performance than LB cows based on changes in mRNA expression of PEPCKc, PEPCKm, CS, CPT 1A, CPT 2, and PPARalpha. Part of the variation measured in this study was explained by parity. Significant Spearman rank correlation coefficients between the variables were not similar at each time point and were not similar between the groups at each time point, suggesting that metabolic regulation differs between cows. In conclusion, metabolic regulation in dairy cows is a dynamic system, and differs obviously between cows at different metabolic stages related to parturition.
Resumo:
Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFalpha), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, beta-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFalpha concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement.
Resumo:
Increased serum bile salt levels have been associated to a single-nucleotide polymorphism in the bile salt export pump (BSEP; ABCB11) in several acquired cholestatic liver diseases but there is little evidence in alcoholic liver disease (ALD). Furthermore, a crosstalk between vitamin D and bile acid synthesis has recently been discovered. Whether this crosstalk has an influence on the course of ALD is unclear to date. Our aim was to analyse the role of genetic polymorphisms in BSEP and the vitamin D receptor gene (NR1I1) on the emergence of cirrhosis in patients with ALD. Therefore, 511 alcoholic patients (131 with cirrhosis and 380 without cirrhosis) underwent ABCB11 genotyping (rs2287622). Of these, 321 (131 with cirrhosis and 190 without cirrhosis) were also tested for NR1I1 polymorphisms (bat-haplotype: BsmI rs1544410, ApaI rs7975232 and TaqI rs731236). Frequencies of ABCB11 and NR1I1 genotypes and haplotypes were compared between alcoholic patients with and without cirrhosis and correlated to serum bile salt, bilirubin and aspartate aminotransferase levels in those with cirrhosis. Frequencies of ABCB11 and NR1I1 genotypes and haplotypes did not differ between the two subgroups and no significant association between genotypes/haplotypes and liver function tests could be determined for neither polymorphism. We conclude that ABCB11 and NR1I1 polymorphisms are obviously not associated with development of cirrhosis in patients with ALD.
Resumo:
INTRODUCTION Supplementation with beta-alanine may have positive effects on severe-intensity, intermittent, and isometric strength-endurance performance. These could be advantageous for competitive alpine skiers, whose races last 45 to 150 s, require metabolic power above the aerobic maximum, and involve isometric muscle work. Further, beta-alanine supplementation affects the muscle force-frequency relationship, which could influence explosiveness. We explored the effects of beta-alanine on explosive jump performance, severe exercise energy metabolism, and severe-intensity ski-like performance. METHODS Nine male elite alpine skiers consumed 4.8 g/d beta-alanine or placebo for 5 weeks in a double-blind fashion. Before and after, they performed countermovement jumps (CMJ), a 90-s cycling bout at 110% VO2max (CLT), and a maximal 90-s box jump test (BJ90). RESULTS Beta-alanine improved maximal (+7 ± 3%, d = 0.9) and mean CMJ power (+7 ± 2%, d = 0.7), tended to reduce oxygen deficit (-3 ± 8%, p = .06) and lactate accumulation (-12 ± 31%) and enhance aerobic energy contribution (+1.3 ± 2.9%, p = .07) in the CLT, and improved performance in the last third of BJ90 (+7 ± 4%, p = .02). These effects were not observed with placebo. CONCLUSIONS Beta-alanine supplementation improved explosive and repeated jump performance in elite alpine skiers. Enhanced muscle contractility could possibly explain improved explosive and repeated jump performance. Increased aerobic energy production could possibly help explain repeated jump performance as well.
Resumo:
The aim was to study the variation in metabolic responses in early-lactating dairy cows (n = 232) on-farm that were pre-selected for a high milk fat content (>45 g/l) and a high fat/protein ratio in milk (>1.5) in their previous lactation. Blood was assayed for concentrations of metabolites and hormones. Liver was measured for mRNA abundance of 25 candidate genes encoding enzymes and receptors involved in gluconeogenesis (6), fatty acid β-oxidation (6), fatty acid and triglyceride synthesis (5), cholesterol synthesis (4), ketogenesis (2) and the urea cycle (2). Two groups of cows were formed based on the plasma concentrations of glucose, non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) (GRP+, high metabolic load; glucose <3.0 mm, NEFA >300 μm and BHBA >1.0 mm, n = 30; GRP-, low metabolic load; glucose >3.0 mm, NEFA <300 μm and BHBA <1.0 mm, n = 30). No differences were found between GRP+ and GRP- for the milk yield at 3 weeks post-partum, but milk fat content was higher (p < 0.01) for GRP+ than for GRP-. In week 8 post-partum, milk yield was higher in GRP+ in relation to GRP- (37.5 vs. 32.5 kg/d; p < 0.01). GRP+ in relation to GRP- had higher (p < 0.001) NEFA and BHBA and lower glucose, insulin, IGF-I, T3 , T4 concentrations (p < 0.01). The mRNA abundance of genes related to gluconeogenesis, fatty acid β-oxidation, fatty acid and triglyceride synthesis, cholesterol synthesis and the urea cycle was different in GRP+ compared to GRP- (p < 0.05), although gene transcripts related to ketogenesis were similar between GRP+ and GRP-. In conclusion, high metabolic load post-partum in dairy cows on-farm corresponds to differences in the liver in relation to dairy cows with low metabolic load, even though all cows were pre-selected for a high milk fat content and fat/protein ratio in milk in their previous lactation.
Resumo:
Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.
Resumo:
During the last few years γ-hydroxybutyric acid (GHB) and γ-butyrolactone (GBL) have attracted much interest as recreational drugs and knock-out drops in drug-facilitated sexual assaults. This experiment aims at getting an insight into the pharmacokinetics of GHB after intake of GBL. Therefore Two volunteers took a single dose of 1.5 ml GBL, which had been spiked to a soft drink. Assuming that GBL was completely metabolized to GHB, the corresponding amount of GHB was 2.1 g. Blood and urine samples were collected 5 h and 24 h after ingestion, respectively. Additionally, hair samples (head hair and beard hair) were taken within four to five weeks after intake of GBL. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after protein precipitation with acetonitrile. The following observations were made: spiked to a soft drink, GBL, which tastes very bitter, formed a liquid layer at the bottom of the glass, only disappearing when stirring. Both volunteers reported weak central effects after approximately 15 min, which disappeared completely half an hour later. Maximum concentrations of GHB in serum were measured after 20 min (95 µg/ml and 106 µg/ml). Already after 4-5 h the GHB concentrations in serum decreased below 1 µg/ml. In urine maximum GHB concentrations (140 µg/ml and 120 µg/ml) were measured after 1-2 h, and decreased to less than 1 µg/ml within 8-10 h. The Ratio of GHB in serum versus blood was 1.2 and 1.6
Resumo:
BACKGROUND Drug eluting stents with durable polymers may be associated with hypersensitivity, delayed healing, and incomplete endothelialization, which may contribute to late/very late stent thrombosis and the need for prolonged dual antiplatelet therapy. Bioabsorbable polymers may facilitate stent healing, thus enhancing clinical safety. The SYNERGY stent is a thin-strut, platinum chromium metal alloy platform with an ultrathin bioabsorbable Poly(D,L-lactide-co-glycolide) abluminal everolimus-eluting polymer. We performed a multicenter, randomized controlled trial for regulatory approval to determine noninferiority of the SYNERGY stent to the durable polymer PROMUS Element Plus everolimus-eluting stent. METHODS AND RESULTS Patients (n=1684) scheduled to undergo percutaneous coronary intervention for non-ST-segment-elevation acute coronary syndrome or stable coronary artery disease were randomized to receive either the SYNERGY stent or the PROMUS Element Plus stent. The primary end point of 12-month target lesion failure was observed in 6.7% of SYNERGY and 6.5% PROMUS Element Plus treated subjects by intention-to-treat (P=0.83 for difference; P=0.0005 for noninferiority), and 6.4% in both the groups by per-protocol analysis (P=0.0003 for noninferiority). Clinically indicated revascularization of the target lesion or definite/probable stent thrombosis were observed in 2.6% versus 1.7% (P=0.21) and 0.4% versus 0.6% (P=0.50) of SYNERGY versus PROMUS Element Plus-treated subjects, respectively. CONCLUSIONS In this randomized trial, the SYNERGY bioabsorbable polymer everolimus-eluting stent was noninferior to the PROMUS Element Plus everolimus-eluting stent with respect to 1-year target lesion failure. These data support the relative safety and efficacy of SYNERGY in a broad range of patients undergoing percutaneous coronary intervention. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01665053.
Resumo:
Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) is associated with increased fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent, endogenous biomarkers of PPARalpha activation and hence increased fatty acid beta-oxidation, healthy human volunteers were given fenofibrate orally for 2 weeks and their urine was profiled by UPLC-QTOFMS. Biomarkers identified by the machine learning algorithm random forests included significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold), observations that are consistent with known targets of PPARalpha including pantothenate kinase and genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine (5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers as indicators of PPARalpha activation was demonstrated using the Ppara-null mouse. Urinary pantothenic acid and acylcarnitines may prove useful indicators of PPARalpha-induced fatty acid beta-oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to understand drug effects on lipid metabolism in both human populations and in inbred mouse models.
Resumo:
Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.