4 resultados para PM(10)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Particulate matter <10 mum (PM(10)) from fossil fuel combustion is associated with an increased prevalence of respiratory symptoms in children and adolescents. However, the effect of PM(10) on respiratory symptoms in young children is unclear. METHODS: The association between primary PM(10) (particles directly emitted from local sources) and the prevalence and incidence of respiratory symptoms was studied in a random sample cohort of 4400 Leicestershire children aged 1-5 years surveyed in 1998 and again in 2001. Annual exposure to primary PM(10) was calculated for the home address using the Airviro dispersion model and adjusted odds ratios (ORS) and 95% confidence intervals were calculated for each microg/m(3) increase. RESULTS: Exposure to primary PM(10) was associated with the prevalence of cough without a cold in both 1998 and 2001, with adjusted ORs of 1.21 (1.07 to 1.38) and 1.56 (1.32 to 1.84) respectively. For night time cough the ORs were 1.06 (0.94 to 1.19) and 1.25 (1.06 to 1.47), and for current wheeze 0.99 (0.88 to 1.12) and 1.28 (1.04 to 1.58), respectively. There was also an association between primary PM(10) and new onset symptoms. The ORs for incident symptoms were 1.62 (1.31 to 2.00) for cough without a cold and 1.42 (1.02 to 1.97) for wheeze. CONCLUSION: In young children there was a consistent association between locally generated primary PM(10) and the prevalence and incidence of cough without a cold and the incidence of wheeze which was independent of potential confounders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Post-natal exposure to air pollution is associated with diminished lung growth during school age. The current authors aimed to determine whether pre-natal exposure to air pollution is associated with lung function changes in the newborn. In a prospective birth cohort of 241 healthy term-born neonates, tidal breathing, lung volume, ventilation inhomogeneity and exhaled nitric oxide (eNO) were measured during unsedated sleep at age 5 weeks. Maternal exposure to particles with a 50% cut-off aerodynamic diameter of 10 microm (PM(10)), nitrogen dioxide (NO(2)) and ozone (O(3)), and distance to major roads were estimated during pregnancy. The association between these exposures and lung function was assessed using linear regression. Minute ventilation was higher in infants with higher pre-natal PM(10) exposure (24.9 mL x min(-1) per microg x m(-3) PM(10)). The eNO was increased in infants with higher pre-natal NO(2) exposure (0.98 ppb per microg x m(-3) NO(2)). Post-natal exposure to air pollution did not modify these findings. No association was found for pre-natal exposure to O(3) and lung function parameters. The present results suggest that pre-natal exposure to air pollution might be associated with higher respiratory need and airway inflammation in newborns. Such alterations during early lung development may be important regarding long-term respiratory morbidity.