73 resultados para PLASMON RESONANCE SPECTROSCOPY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Intramyocellular acetylcarnitine (IMAC) is involved in exercise-related fuel metabolism. It is not known whether levels of systemic glucose influence IMAC levels in type 1 diabetes.
Resumo:
Objective Impaired function of the central gamma-aminobutyric acid (GABA) system, which provides the brain’s major inhibitory pathways, is thought to play an important role in the pathophysiology of anxiety disorders. The effect of acute psychological stress on the human GABA-ergic system is still unknown, however. The purpose of this study was to determine the effect of acute stress on prefrontal GABA levels. Method A recently developed noninvasive magnetic resonance spectroscopy method was used to measure changes in the GABA concentration of the prefrontal cortex in 10 healthy human subjects during a threat-of-shock condition and during a safe condition (two sessions on different days). The main outcome measure was the mean GABA concentration within a 3×3×2-cm3 voxel selected from the medial prefrontal cortex. Results Prefrontal GABA decreased by approximately 18% in the threat-of-shock condition relative to the safe condition. This reduction was specific to GABA, since the concentrations of N-acetyl-aspartate, choline-containing compounds, and glutamate/glutamine levels obtained in the same spectra did not change significantly. Conclusions This result appeared compatible with evidence from preclinical studies in rodents, which showed rapid presynaptic down-regulation of GABA-ergic neurotransmission in response to acute psychological stress. The molecular mechanism and functional significance of this reduced inhibitory effect of acute psychological stress in relation to impaired GABA-ergic function in anxiety disorders merit further investigation.
Resumo:
Many metabolites in the proton magnetic resonance spectrum undergo magnetization exchange with water, such as those in the downfield region (6.0-8.5 ppm) and the upfield peaks of creatine, which can be measured to reveal additional information about the molecular environment. In addition, these resonances are attenuated by conventional water suppression techniques complicating detection and quantification. To characterize these metabolites in human skeletal muscle in vivo at 3 T, metabolite cycled non-water-suppressed spectroscopy was used to conduct a water inversion transfer experiment in both the soleus and tibialis anterior muscles. Resulting median exchange-independent T(1) times for the creatine methylene resonances were 1.26 and 1.15 s, and for the methyl resonances were 1.57 and 1.74 s, for soleus and tibialis anterior muscles, respectively. Magnetization transfer rates from water to the creatine methylene resonances were 0.56 and 0.28 s(-1) , and for the methyl resonances were 0.39 and 0.30 s(-1) , with the soleus exhibiting faster transfer rates for both resonances, allowing speculation about possible influences of either muscle fibre orientation or muscle composition on the magnetization transfer process. These water magnetization transfer rates observed without water suppression are in good agreement with earlier reports that used either postexcitation water suppression in rats, or short CHESS sequences in human brain and skeletal muscle.
Resumo:
Several practical obstacles in data handling and evaluation complicate the use of quantitative localized magnetic resonance spectroscopy (qMRS) in clinical routine MR examinations. To overcome these obstacles, a clinically feasible MR pulse sequence protocol based on standard available MR pulse sequences for qMRS has been implemented along with newly added functionalities to the free software package jMRUI-v5.0 to make qMRS attractive for clinical routine. This enables (a) easy and fast DICOM data transfer from the MR console and the qMRS-computer, (b) visualization of combined MR spectroscopy and imaging, (c) creation and network transfer of spectroscopy reports in DICOM format, (d) integration of advanced water reference models for absolute quantification, and (e) setup of databases containing normal metabolite concentrations of healthy subjects. To demonstrate the work-flow of qMRS using these implementations, databases for normal metabolite concentration in different regions of brain tissue were created using spectroscopic data acquired in 55 normal subjects (age range 6-61 years) using 1.5T and 3T MR systems, and illustrated in one clinical case of typical brain tumor (primitive neuroectodermal tumor). The MR pulse sequence protocol and newly implemented software functionalities facilitate the incorporation of qMRS and reference to normal value metabolite concentration data in daily clinical routine. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.
Increasing Upconversion by Plasmon Resonance in Metal Nanoparticles - A Combined Simulation Analysis
Resumo:
Proton magnetic resonance spectroscopy (MRS) allows the assessment of various cerebral metabolites non-invasively in vivo. Among 1H MRS-detectable metabolites, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate (tNAA), trimethylamines (TMA), creatine and creatine phosphate (tCr), inositol (Ins) and glutamate (Gla) are of particular interest, since these moieties can be assigned to specific neuronal and glial metabolic pathways, membrane constituents, and energy metabolism. In this study on 94 subjects from a memory clinic population, 1H MRS results (single voxel STEAM: TE 20 ms, TR 1500 ms) on the above metabolites were assessed for five different brain regions in probable vascular dementia (VD), probable Alzheimer's disease (AD), and age-matched healthy controls. In both VD and AD, ratios of tNAA/tCr were decreased, which may be attributed to neuronal atrophy and loss, and Ins/tCr-ratios were increased indicating either enhanced gliosis or alteration of the cerebral inositol metabolism. However, the topographical distribution of the metabolic alterations in both diseases differed, revealing a temporoparietal pattern for AD and a global, subcortically pronounced pattern for VD. Furthermore, patients suffering from vascular dementia (VD) had remarkably enhanced TMA/tCr ratios, potentially due to ongoing degradation of myelin. Thus, the metabolic alterations obtained by 1H MRS in vivo allow insights into the pathophysiology of the different dementias and may be useful for diagnostic classification.
Resumo:
Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.
Resumo:
1H-magnetic resonance spectroscopy ((1)H-MRS) of deoxymyoglobin (DMb) provides a means to noninvasively monitor the oxygenation state of human skeletal muscle in work and disease. As shown in this work, it also offers the opportunity to measure the absolute tissue content of DMb, the basic oxygen consumption of resting muscle, and the reperfusion characteristics after release of a pressure cuff. The methodology to determine these tissue properties simultaneously at two positions along the calf is presented. The obtained values are in agreement with invasive determinations. The reproducibility of the (1)H-MRS measurements is established for healthy controls and patients with peripheral arterial disease (PAD). A location dependence in axial direction, as well as differences between controls and patients are demonstrated for all parameters. The reoxygenation time in particular is expected to provide a means to quantitatively monitor therapies aimed at improving muscular perfusion in these patients.
Resumo:
In general, vascular contributions to the in vivo magnetic resonance (MR) brain spectrum are too small to be relevant. In cerebral uptake studies, however, vascular contributions may constitute a major confounder. MR visibility of vascular Phe was investigated by recording localized spectra from fully oxygenated and well-mixed whole blood. Blood Phe levels determined by MR spectroscopy (MRS) and ion-exchange chromatography showed excellent correlation. In addition, effects of blood flow were shown to have a small effect on signal amplitude with the MRS methodology used. Hence, blood Phe is almost completely MR visible at 1.5 T, even though it is severely broadened at higher fields. Without appropriate correction, cerebral Phe influx in studies of brain Phe uptake in phenylketonuria patients or healthy subjects would appear to be faster and lead to higher levels. Similar effects are envisaged for studies of ethanol or glucose uptake across the blood-brain barrier.
Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts
Resumo:
In spite of the facts that magnetic resonance spectroscopy (MRS) is applied as clinical tool in non-specialized institutions and that semi-automatic acquisition and processing tools can be used to produce quantitative information from MRS exams without expert information, issues of spectral quality and quality assessment are neglected in the literature of MR spectroscopy. Even worse, there is no consensus among experts on concepts or detailed criteria of quality assessment for MR spectra. Furthermore, artifacts are not at all conspicuous in MRS and can easily be taken for true, interpretable features. This article aims to increase interest in issues of spectral quality and quality assessment, to start a larger debate on generally accepted criteria that spectra must fulfil to be clinically and scientifically acceptable, and to provide a sample gallery of artifacts, which can be used to raise awareness for potential pitfalls in MRS.
Resumo:
CONTEXT: Magnetic resonance imaging (MRI) combined with magnetic resonance spectroscopy imaging (MRSI) emerged as a promising test in the diagnosis of prostate cancer and showed encouraging results. OBJECTIVE: The aim of this systematic review is to meta-analyse the diagnostic accuracy of combined MRI/MRSI in prostate cancer and to explore risk profiles with highest benefit. EVIDENCE ACQUISITION: The authors searched the MEDLINE and EMBASE databases and the Cochrane Library, and the authors screened reference lists and contacted experts. There were no language restrictions. The last search was performed in August 2008. EVIDENCE SYNTHESIS: We identified 31 test-accuracy studies (1765 patients); 16 studies (17 populations) with a total of 581 patients were suitable for meta-analysis. Nine combined MRI/MRSI studies (10 populations) examining men with pathologically confirmed prostate cancer (297 patients; 1518 specimens) had a pooled sensitivity and specificity on prostate subpart level of 68% (95% CI, 56-78%) and 85% (95% CI, 78-90%), respectively. Compared with patients at high risk for clinically relevant cancer (six studies), sensitivity was lower in low-risk patients (four studies) (58% [46-69%] vs 74% [58-85%]; p>0.05) but higher for specificity (91% [86-94%] vs 78% [70-84%]; p<0.01). Seven studies examining patients with suspected prostate cancer at combined MRI/MRSI (284 patients) had an overall pooled sensitivity and specificity on patients level of 82% (59-94%) and 88% (80-95%). In the low-risk group (five studies) these values were 75% (39-93%) and 91% (77-97%), respectively. CONCLUSIONS: A limited number of small studies suggest that MRI combined with MRSI could be a rule-in test for low-risk patients. This finding needs further confirmation in larger studies and cost-effectiveness needs to be established.