83 resultados para PHOSPHATIDYLINOSITOL 3-KINASE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Phosphatidylinositol 3-kinases (PI3Ks) are key molecules in the signal transduction pathways initiated by the binding of extracellular signals to their cell surface receptors. The PI3K family of enzymes comprises eight catalytic isoforms subdivided into three classes and control a variety of cellular processes including proliferation, growth, apoptosis, migration and metabolism. Deregulation of the PI3K pathway has been extensively investigated in connection to cancer, but is also involved in other commonly occurring diseases such as chronic inflammation, autoimmunity, allergy, atherosclerosis, cardiovascular and metabolic diseases. The fact that the PI3K pathway is deregulated in a large number of human diseases, and its importance for different cellular responses, makes it an attractive drug target. Pharmacological PI3K inhibitors have played a very important role in studying cellular responses involving these enzymes. Currently, a wide range of selective PI3K inhibitors have been tested in preclinical studies and some have entered clinical trials in oncology. However, due to the complexity of PI3K signaling pathways, developing an effective anti-cancer therapy may be difficult. The biggest challenge in curing cancer patients with various signaling pathway abnormalities is to target multiple components of different signal transduction pathways with mechanism-based combinatorial treatments. In this article we will give an overview of the complex role of PI3K isoforms in human diseases and discuss their potential as drug targets. In addition, we will describe the drugs currently used in clinical trials, as well as promising emerging candidates.
Resumo:
Alterations of the epidermal growth factor receptor (EGFR) can be observed in a significant subset of esophageal adenocarcinomas (EACs), and targeted therapy against EGFR may become an interesting approach for the treatment of these tumors. Mutations of KRAS, NRAS, BRAF, and phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) and deregulation of PTEN expression influence the responsiveness against anti-EGFR therapy in colorectal carcinomas. We investigated the prevalence of these events in a collection of 117 primary resected EACs, correlated the findings with EGFR expression and amplification, and determined their clinicopathologic impact. KRAS mutations were detected in 4 (3%) of 117 tumors (3× G12D and 1 G12V mutation). One tumor had a PIK3CA E545K mutation. Neither NRAS nor BRAF mutations were detected. Sixteen (14%) of 117 cases were negative for PTEN expression, determined by immunohistochemistry. Loss of PTEN was observed predominantly in advanced tumor stages (P = .004). There was no association between PTEN and EGFR status. Loss of PTEN was associated with shorter overall and disease-free survival (P < .001 each) and also an independent prognostic factor in multivariate analysis (P = .015). EGFR status had no prognostic impact in this case collection. In summary, loss of PTEN can be detected in a significant subset of EAC and is associated with an aggressive phenotype. Therefore, PTEN may be useful as a prognostic biomarker. In contrast, mutations of RAS/RAF/PIK3CA appear only very rarely, if at all, in EAC. A possible predictive role of PTEN in anti-EGFR treatment warrants further investigations, whereas determination of RAS/RAF/PIK3CA mutations may only have a minor impact in this context.
Resumo:
BACKGROUND: Eosinophil differentiation, activation, and survival are largely regulated by IL-5. IL-5-mediated transmembrane signal transduction involves both Lyn-mitogen-activated protein kinases and Janus kinase 2-signal transducer and activator of transcription pathways. OBJECTIVE: We sought to determine whether additional signaling molecules/pathways are critically involved in IL-5-mediated eosinophil survival. METHODS: Eosinophil survival and apoptosis were measured in the presence and absence of IL-5 and defined pharmacologic inhibitors in vitro. The specific role of the serine/threonine kinase proviral integration site for Moloney murine leukemia virus (Pim) 1 was tested by using HIV-transactivator of transcription fusion proteins containing wild-type Pim-1 or a dominant-negative form of Pim-1. The expression of Pim-1 in eosinophils was analyzed by means of immunoblotting and immunofluorescence. RESULTS: Although pharmacologic inhibition of phosphatidylinositol-3 kinase (PI3K) by LY294002, wortmannin, or the selective PI3K p110delta isoform inhibitor IC87114 was successful in each case, only LY294002 blocked increased IL-5-mediated eosinophil survival. This suggested that LY294002 inhibited another kinase that is critically involved in this process in addition to PI3K. Indeed, Pim-1 was rapidly and strongly expressed in eosinophils after IL-5 stimulation in vitro and readily detected in eosinophils under inflammatory conditions in vivo. Moreover, by using specific protein transfer, we identified Pim-1 as a critical element in IL-5-mediated antiapoptotic signaling in eosinophils. CONCLUSIONS: Pim-1, but not PI3K, plays a major role in IL-5-mediated antiapoptotic signaling in eosinophils.
Resumo:
Brain tumors comprise a wide variety of neoplasia classified according to their cellular origin and their morphological and histological characteristics. The transformed phenotype of brain tumor cells has been extensively studied in the past years, achieving a significant progress in our understanding of the molecular pathways leading to tumorigenesis. It has been reported that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is frequently altered in grade IV brain tumors resulting in uncontrolled cell growth, survival, proliferation, angiogenesis, and migration. This aberrant activation can be explained by oncogenic mutations in key components of the pathway or through abnormalities in its regulation. These alterations include overexpression and mutations of receptor tyrosine kinases (RTKs), mutations and deletions of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, encoding a lipid kinase that directly antagonized PI3K activity, and alterations in Ras signaling. Due to promising results of preclinical studies investigating the PI3K/AKT pathway in grade IV brain tumors like glioblastoma and medulloblastoma, the components of this pathway have emerged as promising therapeutic targets to treat these malignant brain tumors. Although an arsenal of small molecule inhibitors that target specific components of this signaling pathway is being developed, its successful application in the clinics remains a challenge. In this article we will review the molecular basis of the PI3K/AKT signaling pathway in malignant brain tumors, mainly focusing on glioblastoma and medulloblastoma, and we will further discuss the current status and potential of molecular targeted therapies.
Resumo:
Lung cancer is the leading cause of cancer-related mortality worldwide and more than 1 million people annually die in consequence of lung cancer. Although an improvement in lung cancer treatment could be achieved, especially in the last decade, the development of additional therapeutic strategies is urgently required in order to provide improved survival benefit for patients. Lung cancer formation is caused by genetic modifications commonly caused by tobacco smoking. Numerous studies have demonstrated the role of extracellular growth factors in lung cancer cell proliferation, metastasis, and chemoresistance. Mutations and amplifications in molecules related to receptor tyrosine signalling, such as EGFR, ErbB2, c-Met, c-Kit, VEGFR, PI3K, and PTEN are only some of the alterations known to contribute to the development of lung cancer. The phosphoinositide 3-kinase (PI3K) pathway, fundamental for cell development, growth, and survival, is known to be frequently altered in neoplasia, including carcinomas of the lung. Based on the high frequency of alterations, which include mutations and amplifications, leading to over-activation of certain upstream/downstream mediators, targeting components of the PI3K signalling pathway is considered to be a promising therapeutic approach in cancer treatment. In this article we will summarize the current knowledge about the involvement of PI3K signalling in lung cancer and discuss the development of targeted therapies involving PI3K pathway inhibitors.
Resumo:
The phosphoinositide 3-kinase (PI3K) pathway is fundamental for cell proliferation and survival and is frequently altered and activated in neoplasia, including carcinomas of the lung. In this study, we investigated the potential of targeting the catalytic class I(A) PI3K isoforms in small cell lung cancer (SCLC), which is the most aggressive of all lung cancer types.
Resumo:
The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA.
Resumo:
Both the biology and the therapeutic potential of the phosphoinositide 3-kinase (PI3K) signalling axis have been the subject of intense investigation; however, little is known about the regulation of PI3K expression. Emerging evidence indicates that PI3K levels change in response to cellular stimulation with insulin and nuclear receptor ligands, and during various physiological and pathological processes including differentiation, regeneration, hypertension and cancer. Recently identified mechanisms that control PI3K production include increased gene copy number in cancer, and transcriptional regulation of the p110alpha PI3K gene by FOXO3a, NF-kappaB and p53, and of the PI3K regulatory subunits by STAT3, EBNA-2 and SREBP. In most instances, however, the impact of alterations in PI3K expression on PI3K signalling and disease remains to be established.
Resumo:
Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.
Resumo:
Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.
Resumo:
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.
Resumo:
Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFalpha), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, beta-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFalpha concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement.
Resumo:
The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.
Resumo:
Rat Walker 256 carcinosarcoma cells spontaneously develop front-tail polarity and migrate in the absence of added stimuli. Constitutive activation of phosphatidylinositol-3 kinase (PI 3-kinase), Rac, Rho and Rho kinase are essential for these processes. Ezrin and moesin are putative targets of these signaling pathways leading to spontaneous migration. To test this hypothesis, we used specific siRNA probes that resulted in a downregulation of ezrin and moesin by about 70% and in a similar reduction in the fraction of migrating cells. Spontaneous polarization however was not affected, indicating a more subtle role of ezrin and moesin in migration. We provide furthermore evidence that endogenous ezrin and moesin colocalize with F-actin at the contracted tail of polarized cells, similar to ectopically expressed green fluorescent protein-tagged ezrin. Our results suggest that myosin light chain and ezrin are markers of front and tail, respectively, even in the absence of morphological polarization. We further show that endogenous ezrin and moesin are phosphorylated and that activities of PI-3 kinase, Rho and Rac, but not of Rho-kinase, are required for this C-terminal phosphorylation. Activation of protein kinase C in contrast suppressed phosphorylation of ezrin and moesin. Inhibition of ezrin phosphorylation prevented its membrane association.