94 resultados para PHOBIA INVENTORY SPIN
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The Working Alliance Inventory-Short Revised (WAI-SR) is a recently refined measure of the therapeutic alliance that assesses three key aspects of the therapeutic alliance: (a) agreement on the tasks of therapy, (b) agreement on the goals of therapy and (c) development of an affective bond. The WAI-SR demonstrated good psychometric properties in an initial validation in psychotherapy outpatients in the USA. The generalizability of these findings is limited because in some countries a substantial portion of individual psychotherapy is delivered in inpatient settings. This study investigated and compared the psychometric properties of the WAI-SR in German outpatients (N = 88) and inpatients (N = 243). In both samples reliability (alpha > 0.80) and convergent validity with the Helping Alliance Questionnaire were good (r > 0.64). Confirmatory factor analysis showed acceptable to good model fit for the proposed Bond-Task-Goal model in both samples. Multi-group analysis demonstrated that the same constructs were measured across settings. Alliance ratings of outpatients and inpatients differed regarding the overlap of alliance components and the magnitude of the alliance ratings: The differentiation of the alliance components was poorer in inpatients and they reported lower alliances. Unique aspects of the alliance in inpatient treatment are discussed and a need for further research on the alliance in inpatient settings is pointed out. Overall, the WAI-SR can be recommended for alliance assessment in both settings.
Resumo:
Cardiac rehabilitation (CR) programmes support patients to achieve professionally recommended cardiovascular prevention targets and thus good clinical status and improved quality of life and prognosis. Information on CR service delivery in Europe is sketchy.
Resumo:
Neuroimaging using magnetic resonance imaging (MRI) is required for the investigation of surgically intractable epilepsy. In addition to the standard MRI techniques, perfusion sequences can be added to improve visualization of the underlying pathological changes. Also, as arterial spin-labeling (ASL) MRI perfusion does not require contrast administration, it may even be advantageous in these patients. We report here on three patients with epilepsy and tuberous sclerosis who underwent brain MRI with ASL and positron emission tomography (PET), both of which were found to correlate with each other and with electrophysiological data.
Resumo:
Background and Purpose: In acute stroke it is no longer sufficient to detect simply ischemia, but also to try to evaluate reperfusion/recanalization status and predict eventual hemorrhagic transformation. Arterial spin labeling (ASL) perfusion may have advantages over contrast-enhanced perfusion-weighted imaging (cePWI), and susceptibility weighted imaging (SWI) has an intrinsic sensitivity to paramagnetic effects in addition to its ability to detect small areas of bleeding and hemorrhage. We want to determine here if their combined use in acute stroke and stroke follow-up at 3T could bring new insight into the diagnosis and prognosis of stroke leading to eventual improved patient management. Methods: We prospectively examined 41 patients admitted for acute stroke (NIHSS >1). Early imaging was performed between 1 h and 2 weeks. The imaging protocol included ASL, cePWI, SWI, T2 and diffusion tensor imaging (DTI), in addition to standard stroke protocol. Results: We saw four kinds of imaging patterns based on ASL and SWI: patients with either hypoperfusion and hyperperfusion on ASL with or without changes on SWI. Hyperperfusion was observed on ASL in 12/41 cases, with hyperperfusion status that was not evident on conventional cePWI images. Signs of hemorrhage or blood-brain barrier breakdown were visible on SWI in 15/41 cases, not always resulting in poor outcome (2/15 were scored mRS = 0–6). Early SWI changes, together with hypoperfusion, were associated with the occurrence of hemorrhage. Hyperperfusion on ASL, even when associated with hemorrhage detected on SWI, resulted in good outcome. Hyperperfusion predicted a better outcome than hypoperfusion (p = 0.0148). Conclusions: ASL is able to detect acute-stage hyperperfusion corresponding to luxury perfusion previously reported by PET studies. The presence of hyperperfusion on ASL-type perfusion seems indicative of reperfusion/collateral flow that is protective of hemorrhagic transformation and a marker of favorable tissue outcome. The combination of hypoperfusion and changes on SWI seems on the other hand to predict hemorrhage and/or poor outcome.
Resumo:
INTRODUCTION: Magnetic resonance imaging (MRI) is required for the investigation of surgically intractable epilepsy. In addition to the standard MRI techniques, perfusion sequences can be added to improve visualization of underlying pathological changes. Arterial spin-labeling (ASL) MRI perfusion does not require contrast administration and, for this reason, may have advantages in these patients. METHODS: We report here on 16 patients with epilepsy who underwent MRI of the brain with ASL and positron emission tomography (PET). RESULTS: Despite a slightly reduced resolution with ASL, we found a correlation between ASL, PET and electrophysiological data, with hypoperfusion on ASL that corresponded with hypoperfusion on interictal PET. CONCLUSION: Given the correlation between ASL and PET and electrophysiology, perfusion with ASL could become part of the standard work-up in patients with epilepsy.
Resumo:
To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score.
Resumo:
Theta burst stimulation (TBS) is a novel variant of repetitive transcranial magnetic stimulation (rTMS), which induces changes in neuronal excitability persisting up to 1h. When elicited in the primary motor cortex, such physiological modulations might also have an impact on motor behavior. In the present study, we applied TBS in combination with pseudo continuous arterial spin labeling (pCASL) in order to address the question of whether TBS effects are measurable by means of changes in physiological parameters such as cerebral blood flow (CBF) and if TBS-induced plasticity can modify motor behavior. Twelve right-handed healthy subjects were stimulated using an inhibitory TBS protocol at subthreshold stimulation intensity targeted over the right motor cortex. The control condition consisted of within-subject Sham treatment in a crossover design. PCASL was performed before (pre TBS/pre Sham) and immediately after treatment (post TBS/post Sham). During the pCASL runs, the subjects performed a sequential fingertapping task with the left hand at individual maximum speed. There was a significant increase of CBF in the primary motor cortex after TBS, but not after Sham. It is assumed that inhibitory TBS induced a "local virtual lesion" which leads to the mobilization of more neuronal resources. There was no TBS-specific modulation in motor behavior, which might indicate that acute changes in brain plasticity caused by TBS are immediately compensated. This compensatory reaction seems to be observable at the metabolic, but not at the behavioral level.