2 resultados para PB-DIFFUSION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of Ar release from K-feldspar samples in laboratory experiments and during their geological history are assessed here. Modern petrology clearly established that the chemical and isotopic record of minerals is normally dominated by aqueous recrystallization. The laboratory critique is trickier, which explains why so many conflicting approaches have been able to survive long past their expiration date. Current models are evaluated for self-consistency; especially Arrhenian non-linearity leads to paradoxes. The models’ testable geological predictions suggest that temperature-based downslope extrapolations often overestimate observed geological Ar mobility substantially. An updated interpretation is based on the unrelatedness of geological behaviour to laboratory experiments. The isotopic record of K-feldspar in geological samples is not a unique function of temperature, as recrystallisation promoted by aqueous fluids is the predominant mechanism controlling isotope transport. K-feldspar should therefore be viewed as a hygrochronometer. Laboratory degassing proceeds from structural rearrangements and phase transitions such as are observed in situ at high temperature in Na and Pb feldspars. These effects violate the mathematics of an inert Fick’s Law matrix and preclude downslope extrapolation. The similar upward-concave, non-linear shapes of Arrhenius trajectories of many silicates, hydrous and anhydrous, are likely common manifestations of structural rearrangements in silicate structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

K-feldspar (Kfs) from the Chain of Ponds Pluton (CPP) is the archetypal reference material, on which thermochronological modeling of Ar diffusion in discrete “domains” was founded. We re-examine the CPP Kfs using cathodoluminescence and back-scattered electron imaging, transmission electron microscopy, and electron probe microanalysis. 40Ar/39Ar stepwise heating experiments on different sieve fractions, and on handpicked and unpicked aliquots, are compared. Our results reproduce the staircase-shaped age spectrum and the Arrhenius trajectory of the literature sample, confirming that samples collected from the same locality have an identical Ar isotope record. Even the most pristine-looking Kfs from the CPP contains successive generations of secondary, metasomatic/retrograde mineral replacements that post-date magmatic crystallization. These chemically and chronologically distinct phases are responsible for its staircase-shaped age spectra, which are modified by handpicking. While genuine within-grain diffusion gradients are not ruled out by these data, this study demonstrates that the most important control on staircase-shaped age spectra is the simultaneous presence of heterochemical, diachronous post-magmatic mineral growth. At least five distinct mineral species were identified in the Kfs separate, three of which can be traced to external fluids interacting with the CPP in a chemically open system. Sieve fractions have size-shifted Arrhenius trajectories, negating the existence of the smallest “diffusion domains”. Heterochemical phases also play an important role in producing non-linear trajectories. In vacuo degassing rates recovered from Arrhenius plots are neither related to true Fick’s Law diffusion nor to the staircase shape of the age spectra. The CPP Kfs used to define the "diffusion domain" model demonstrates the predominance of metasomatic alteration by hydrothermal fluids and recrystallization in establishing the natural Ar distribution amongst different coexisting phases that gives rise to the staircase-shaped age spectrum. Microbeam imaging of textures is as essential for 40Ar-39Ar hygrochronology as it is for U-Pb geochronology.