22 resultados para PARTITION-COEFFICIENTS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.
Resumo:
We investigated high temperature Mo isotope fractionation in a hydrous supra-subduction volcano-plutonic system (Kos, Aegean Arc, Greece) in order to address the debate on the δ98/95Mo variability of the continental crust. In this igneous system, where differentiation is interpreted to be dominated by fractional crystallization, bulk rock data from olivine basalt to dacite show δ98/95Mo ratios increasing from +0.3 to +0.6‰ along with Mo concentrations increasing from 0.8 to 4.1 μg g−1. Data for hornblende and biotite mineral separates reveal the extraction of light Mo into crystallizing silicates, with minimum partition coefficients between hornblende- silicate melt and biotite-silicate melt of 0.6 and 0.4 δ98/95Mo, respectively. Our data document significant Mo isotope fractionation at magmatic temperatures, hence, the igneous contribution to continental runoff is variable, besides probable source-related variability. Based on these results and published data an average continental δ98/95Mo of +0.3 to +0.4‰ can be derived. This signature corresponds more closely to the average of published data of dissolved Mo loads of large rivers than previous estimates and is consistent with an upper limit of δ98/95Mo = 0.4‰ of the Earth's upper crust as derived from the analysis of molybdenites.
Resumo:
Trace element behavior during hydrous melting of a metasomatized garnet–peridotite was examined at pressures of 4–6 GPa and temperatures of 1000 °C–1200 °C, conditions appropriate for fluid penetrating the mantle wedge atop the subducting slab. Experiments were performed in a rocking multi-anvil apparatus using a diamond-trap setup. The compositions of the fluid and melt phases were measured using the cryogenic LA-ICP-MS technique. The water-saturated solidus of the K-lherzolite composition is located between 900 °C and 1000 °C at 4 GPa and between 1000 °C and 1100 °C at 5 and 6 GPa. The partition coefficients between fluid or melt and clinopyroxene reveal an asymmetric MREE trough with a minimum at Dy. The clinopyroxene in equilibrium with aqueous fluids is characterized by DUfluid–cpx > DThfluid–cpx while DUmelt–cpx tends to be similar to DThmelt–cpx. The partition coefficients between fluid or melt and garnet reveal very strong light to heavy REE fractionation, DLa/DLu from 95 (hydrous melt) to 1600 (aqueous fluid). The LILE are highly incompatible with partition coefficients > 50. The behavior of HFSE are decoupled, with DZr,Hf close to 1 while DNb,Ta > 10. Garnet is characterized by DUmelt/fluid–garnet < DThmelt/fluid–garnet. A comparison of our experimental partitioning results for trivalent cations as well as the results from the literature and the calculations carried out using the lattice strain model adapted to the presence of water in the bulk system indicates that H2O in the fluid or melt phase has a prominent effect on trace element partitioning. Garnet in mantle rocks in equilibrium with an aqueous fluid is characterized by significantly higher Do(3 +) for REE in the X site of the garnet compared with the partitioning values of the optimal cation in garnet in equilibrium with hydrous melts. Our data show for the first time that the change in the nature of the mobile phase (fluid vs. melt) does affect the affinities of trace elements into the garnet crystal at conditions below the second critical endpoint of the system. The same also applies for clinopyroxene, although this is less clear. Consequently, our new data allow for refinements in predictive modeling of element transfer from the slab to the mantle wedge and of possible compositions of metasomatized mantle that sources OIB magmatism.
Resumo:
The effects of crystal chemistry and melt composition on the control of clinopyroxene/melt element partitioning (D) during the assimilation of olivine/peridotite by felsic magma have been investigated in Mesozoic high-Mg diorites from North China. The assimilation resulted in significant increase of Mg, Cr and Ni and only slight (< 30%) decrease of incompatible elements of the magma, and the compositional variations have been mirrored by the normally and reversely zoned clinopyroxene microphenocrysts formed at the early stage of the magma evolution. The Mg# [100 × Mg / (Mg + Fe)] values of the reversely zoned clinopyroxenes increase from 65 to 75 in the core to 85–90 in the high-Mg midsection, and reduce back to 73–79 at the rim. Trace element profiles across all these clinopyroxene domains have been measured by LA-ICP-MS. The melt trace element composition has been constrained from bulk rock analyses of the fine-grained low- and high-Mg diorites. Clinopyroxene/melt partition coefficients for rare earth elements (REE) and Y in the high-Mg group zonings (Mg# > 73–79, DDy < 1.2) are positively correlated with tetrahedral IVAl and increase by a factor of 3–4 as tetrahedral IVAl increases from 0.01 to 0.1 per formula unit (pfu). These systematic variations are interpreted to be controlled by the clinopyroxene composition. In contrast, partition coefficients for low-Mg group zonings (Mg# < 75–79, DDy > 1.2) are elevated by up to an order of magnitude (for REE and Y) or more (for Zr and Hf) at similar IVAl, indicating dominant control of melt composition/structure. DZr and DHf show a larger sensitivity to the compositional change of crystal and melt than DREE. DTi values for the low- and high-Mg zonings show a uniform dependence on IVAl. DSr and DLi are insensitive to the compositional change of clinopyroxene and melt, resulting in Sr depletions in the clinopyroxene zonings with elevated REE without crystallization of plagioclase. Our observations show that crystal chemistry and melt composition/structure may alternatively control clinopyroxene/melt partitioning during the assimilation of peridotite by felsic magma, and may be useful for deciphering clinopyroxene compositions and related crust–mantle processes.
Resumo:
In order to constrain the salinity of subduction zone fluids, piston-cylinder experiments have been conducted to investigate the partitioning behaviour of Cl and F in subducted sediments. These experiments were performed at H2O-undersaturated conditions with a synthetic pelite starting composition containing 800 ppm Cl, over a pressure and temperature range of 2.5–4.5 GPa and 630–900 °C. Repetitive experiments were conducted with 1900 ppm Cl + 1000 ppm F, and 2100 ppm Cl. Apatite represents the most Cl-abundant mineral phase, with Cl concentration varying in the range 0.1–2.82 wt%. Affinity for Cl decreases over the following sequence: aqueous fluid > apatite ⩾ melt > other hydrous minerals (phengite, biotite and amphibole). It was found that addition of F to the Cl-bearing starting composition significantly lowers the Cl partition coefficients between apatite and melt (DClAp–melt) and apatite and aqueous fluid (DClAp–aq). Cl–OH exchange coefficients between apatite and melt (KdCl–OHAp–melt) and apatite and aqueous fluid (KdCl–OHAp–aq) were subsequently calculated. KdCl–OHAp–melt was found to vary from 1 to 58, showing an increase with temperature and a decrease with pressure and displaying a regular decrease with increasing H2O content in melt. Mole fractions of Cl and OH in melt were calculated based on an ideal mixing model for H2O, OH, O, Cl and F. The Cl contents of other hydrous minerals (phengite, biotite and amphibole) fall between 200 and 800 ppm, with resultant Cl partition coefficients from 0.02 to 0.49, appearing independent of the bulk Cl and F content. Preliminary data from this study show that the partitioning behaviour of F is strongly in favour of apatite relative to melt and phengite, with DFAp–melt = 15–51. Apatites from representative eclogite facies metasediments were examined and found to have low Cl contents close to ∼100 ppm. Calculations using our experimentally determined KdCl–OHAp–aq of 0.004 at 2.5 GPa, 630 °C indicate a low salinity character (0.5–2 wt% NaCleq) for the fluid formed during dehydration of subducted oceanic sediment at ∼80 km depth.
Resumo:
Graphical presentation of regression results has become increasingly popular in the scientific literature, as graphs are much easier to read than tables in many cases. In Stata such plots can be produced by the -marginsplot- command. However, while -marginsplot- is very versatile and flexible, it has two major limitations: it can only process results left behind by -margins- and it can only handle one set of results at the time. In this article I introduce a new command called -coefplot- that overcomes these limitations. It plots results from any estimation command and combines results from several models into a single graph. The default behavior of -coefplot- is to plot markers for coefficients and horizontal spikes for confidence intervals. However, -coefplot- can also produce various other types of graphs. The capabilities of -coefplot- are illustrated in this article using a series of examples.
Resumo:
coefplot plots results from estimation commands or Stata matrices. Results from multiple models or matrices can be combined in a single graph. The default behavior of coefplot is to draw markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce various other types of graphs.
Resumo:
Delta-9-tetrahydrocannabinolic acid A (THCA-A) is the biosynthetic precursor of delta-9-tetrahydrocannabinol (THC) in cannabis plants, and has no psychotropic effects. THCA-A can be detected in blood and urine, and several metabolites have been identified. THCA-A was also shown to be incorporated in hair by side stream smoke to a minor extent, but incorporation via blood stream or sweat seems unlikely. The detection of THCA-A in biological fluids may serve as a marker for differentiating between the intake of prescribed THC medication – containing only pure THC – and cannabis products containing THC besides THC-acid A and other cannabinoids. However, the knowledge about its usefulness in forensic cases is very limited. The aim of the present work was the development of a reliable method for THCA-A determination in human blood or plasma using LC–MS/MS and application to cases of driving under the influence of drugs. Fifty eight (58) authentic whole blood and the respective plasma samples were collected from drivers suspected of driving under the influence of cannabis from the region of Bern (Switzerland). Samples were first tested for THC, 11-OH-THC and THC-COOH, and then additionally for THCA-A. For this purpose, the existing LC–MS/MS method was modified and validated, and found to be selective and linear over a range of 1.0 to 200 ng/mL (the correlation coefficients were above 0.9980 in all validation runs). Limit of detection (LOD) and limit of quantification (LOQ) were 0.3 ng/mL and 1.0 ng/mL respectively. Intra- and inter-assay accuracy were equal or better than 90% and intra- and inter-assay precision were equal or better than 11.1%. The mean extraction efficiencies were satisfactory being equal or higher than 85.4%. THCA-A was stable in whole blood samples after 3 freeze/thaw cycles and storage at 4 °C for 7 days. Re-injection (autosampler) stability was also satisfactory. THC was present in all blood samples with levels ranging from 0.7 to 51 ng/mL. THCA-A concentrations ranged from 1.0 to 496 ng/mL in blood samples and from 1.4 to 824 ng/mL in plasma samples. The plasma:blood partition coefficient had a mean value of 1.7 (±0.21, SD). No correlation was found between the degree of intoxication or impairment stated in the police protocols or reports of medical examinations and the detected THCA-A-concentration in blood.