4 resultados para PARTICLE IDENTIFICATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
he physics program of the NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment at the CERN SPS consists of three subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2010) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in p+p, p+Pb interactions and nucleus-nucleus collisions, with the aim to identify the properties of the onset of deconfinement and find evidence for the critical point of strongly interacting matter. The NA61 experiment was approved at CERN in June 2007. The first pilot run was performed during October 2007. Calibrations of all detector components have been performed successfully and preliminary uncorrected spectra have been obtained. High quality of track reconstruction and particle identification similar to NA49 has been achieved. The data and new detailed simulations confirm that the NA61 detector acceptance and particle identification capabilities cover the phase space required by the T2K experiment. This document reports on the progress made in the calibration and analysis of the 2007 data.
Resumo:
The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14 , respectively.
Resumo:
http://www.ncbi.nlm.nih.gov/pubmed/20554796
Resumo:
BACKGROUND Detection of HIV-1 p24 antigen permits early identification of primary HIV infection and timely intervention to limit further spread of the infection. Principally, HIV screening should equally detect all viral variants, but reagents for a standardised test evaluation are limited. Therefore, we aimed to create an inexhaustible panel of diverse HIV-1 p24 antigens. METHODS We generated a panel of 43 recombinantly expressed virus-like particles (VLPs), containing the structural Gag proteins of HIV-1 subtypes A-H and circulating recombinant forms (CRF) CRF01_AE, CRF02_AG, CRF12_BF, CRF20_BG and group O. Eleven 4th generation antigen/antibody tests and five antigen-only tests were evaluated for their ability to detect VLPs diluted in human plasma to p24 concentrations equivalent to 50, 10 and 2 IU/ml of the WHO p24 standard. Three tests were also evaluated for their ability to detect p24 after heat-denaturation for immune-complex disruption, a pre-requisite for ultrasensitive p24 detection. RESULTS Our VLP panel exhibited an average intra-clade p24 diversity of 6.7%. Among the 4th generation tests, the Abbott Architect and Siemens Enzygnost Integral 4 had the highest sensitivity of 97.7% and 93%, respectively. Alere Determine Combo and BioRad Access were least sensitive with 10.1% and 40.3%, respectively. Antigen-only tests were slightly more sensitive than combination tests. Almost all tests detected the WHO HIV-1 p24 standard at a concentration of 2 IU/ml, but their ability to detect this input for different subtypes varied greatly. Heat-treatment lowered overall detectability of HIV-1 p24 in two of the three tests, but only few VLPs had a more than 3-fold loss in p24 detection. CONCLUSIONS The HIV-1 Gag subtype panel has a broad diversity and proved useful for a standardised evaluation of the detection limit and breadth of subtype detection of p24 antigen-detecting tests. Several tests exhibited problems, particularly with non-B subtypes.