22 resultados para Oxidative metabolism

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of acetyl-L-carnitine (ALCAR) supplementation to 3-month-old rats in normal-loading and unloading conditions has been here investigated by a combined morphological, biochemical and transcriptional approach to test whether ALCAR might cause a remodeling of the metabolic/contractile phenotype of soleus muscle. Morphological assessment demonstrated an increase of type I oxidative fiber content and cross-sectional area in ALCAR-treated animals both in normal-loading and in unloading conditions. ALCAR prevented loss of mitochondrial mass in unloaded animals whereas no ALCAR-dependent increase of mitochondrial mass occurred in normal-loaded muscle. Validated microarray analysis delineated an ALCAR-induced maintenance of a slow-oxidative expression program only in unloaded soleus muscle. Indeed, the muscle adjustment of the expression profile of factors underlying mitochondrial oxidative metabolism, protein turnover, fiber type differentiation and an adaptation of voltage-gated ion channel expression was distinguishable with respect to the loading status. This selectivity may suggest a key role of muscle loading status in the manifestation of ALCAR effects. The results extend to a broader level of biological informations the previous notion on ALCAR positive effect in rat soleus muscle during unloading and point to a role of ALCAR for the maintenance of its slow-oxidative fiber character.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECT: The effect of normobaric hyperoxia (fraction of inspired O2 [FIO2] concentration 100%) in the treatment of patients with traumatic brain injury (TBI) remains controversial. The aim of this study was to investigate the effects of normobaric hyperoxia on five cerebral metabolic indices, which have putative prognostic significance following TBI in humans. METHODS: At two independent neurointensive care units, the authors performed a prospective study of 52 patients with severe TBI who were treated for 24 hours with 100% FIO2, starting within 6 hours of admission. Data for these patients were compared with data for a cohort of 112 patients who were treated in the past; patients in the historical control group matched the patients in our study according to their Glasgow Coma Scale scores after resuscitation and their intracranial pressure within the first 8 hours after admission. Patients were monitored with the aid of intracerebral microdialysis and tissue O2 probes. Normobaric hyperoxia treatment resulted in a significant improvement in biochemical markers in the brain compared with the baseline measures for patients treated in our study (patients acting as their own controls) and also compared with findings from the historical control group. In the dialysate the glucose levels increased (369.02 +/- 20.1 micromol/L in the control group and 466.9 +/- 20.39 micromol/L in the 100% O2 group, p = 0.001), whereas the glutamate and lactate levels significantly decreased (p < 0.005). There were also reductions in the lactate/glucose and lactate/pyruvate ratios. Intracranial pressure in the treatment group was reduced significantly both during and after hyperoxia treatment compared with the control groups (15.03 +/- 0.8 mm Hg in the control group and 12.13 +/- 0.75 mm Hg in the 100% O2 group, p < 0.005) with no changes in cerebral perfusion pressure. Outcomes of the patients in the treatment group improved. CONCLUSIONS: The results of the study support the hypothesis that normobaric hyperoxia in patients with severe TBI improves the indices of brain oxidative metabolism. Based on these data further mechanistic studies and a prospective randomized controlled trial are warranted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We hypothesized that in untrained individuals (n=6) a single bout of ergometer endurance exercise provokes a concerted response of muscle transcripts towards a slow-oxidative muscle phenotype over a 24-h period. We further hypothesized this response during recovery to be attenuated after six weeks of endurance training. We monitored the expression profile of 220 selected transcripts in muscle biopsies before as well as 1, 8, and 24 h after a 30-min near-maximal bout of exercise. The generalized gene response of untrained vastus lateralis muscle peaked after 8 h of recovery (P=0.001). It involved multiple transcripts of oxidative metabolism and glycolysis. Angiogenic and cell regulatory transcripts were transiently reduced after 1 h independent of the training state. In the trained state, the induction of most transcripts 8 h after exercise was less pronounced despite a moderately higher relative exercise intensity, partially because of increased steady-state mRNA concentration, and the level of metabolic and extracellular RNAs was reduced during recovery from exercise. Our data suggest that the general response of the transcriptome for regulatory and metabolic processes is different in the trained state. Thus, the response is specifically modified with repeated bouts of endurance exercise during which muscle adjustments are established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to assess the microcirculatory and metabolic consequences of reduced mesenteric blood flow. DESIGN: Prospective, controlled animal study. SETTING: The surgical research unit of a university hospital. SUBJECTS: A total of 13 anesthetized and mechanically ventilated pigs. INTERVENTIONS: Pigs were subjected to stepwise mesenteric blood flow reduction (15% in each step, n = 8) or served as controls (n = 5). Superior mesenteric arterial blood flow was measured with ultrasonic transit time flowmetry, and mucosal and muscularis microcirculatory perfusion in the small bowel were each measured with three laser Doppler flow probes. Small-bowel intramucosal Pco2 was measured by tonometry, and glucose, lactate (L), and pyruvate (P) were measured by microdialysis. MEASUREMENTS AND MAIN RESULTS: In control animals, superior mesenteric arterial blood flow, mucosal microcirculatory blood flow, intramucosal Pco2, and the lactate/pyruvate ratio remained unchanged. In both groups, mucosal blood flow was better preserved than muscularis blood flow. During stepwise mesenteric blood flow reduction, heterogeneous microcirculatory blood flow remained a prominent feature (coefficient of variation, approximately 45%). A 30% flow reduction from baseline was associated with a decrease in microdialysis glucose concentration from 2.37 (2.10-2.70) mmol/L to 0.57 (0.22-1.60) mmol/L (p < .05). After 75% flow reduction, the microdialysis lactate/pyruvate ratio increased from 8.6 (8.0-14.1) to 27.6 (15.5-37.4, p < .05), and arterial-intramucosal Pco2 gradients increased from 1.3 (0.4-3.5) kPa to 10.8 (8.0-16.0) kPa (p < .05). CONCLUSIONS: Blood flow redistribution and heterogeneous microcirculatory perfusion can explain apparently maintained regional oxidative metabolism during mesenteric hypoperfusion, despite local signs of anaerobic metabolism. Early decreasing glucose concentrations suggest that substrate supply may become crucial before oxygen consumption decreases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondrial F(1)F(o)-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F(1)F(o)-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F(1)F(o)-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F(1)F(o)-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F(1) catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F(1) to the lipid monolayer and the F(o) membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within F(o) by electron microscopy and AFM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The muscle has a wide range of possibilities to adapt its phenotype. Repetitive submaximal concentric exercise (i.e., shortening contractions) mainly leads to adaptations of muscle oxidative metabolism and endurance while eccentric exercise (i.e., lengthening contractions) results in muscle growth and gain of muscle strength. Modified gene expression is believed to mediate these exercise-specific muscle adjustments. In the present study, early alterations of the gene expression signature were monitored by a muscle-specific microarray. Transcript profiling was performed on muscle biopsies of vastus lateralis obtained from six male subjects before and in a 24-h time course after a single bout of mild eccentric ergometer exercise. The eccentric exercise consisted of 15 min of eccentric cycling at 50% of the individual maximal concentric power output leading to muscle soreness (5.9 on a 0-10 visual analogue scale) and limited muscle damage (1.7-fold elevated creatine kinase activity). Muscle impairment was highlighted by a transient reduction in jumping height after the eccentric exercise. On the gene expression level, we observed a general early downregulation of detected transcripts, followed by a slow recovery close to the control values within the first 24 h post exercise. Only very few regulatory factors were increased. This expression signature is different from the signature of a previously published metabolic response after an intensive endurance-type concentric exercise as well as after maximal eccentric exercise. This is the first description of the time course of changes in gene expression as a consequence of a mild eccentric stimulus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate whether a decrease in carnitine body stores is a risk factor for valproic acid (VPA)-associated hepatotoxicity and to explore the effects of VPA on carnitine homeostasis in mice with decreased carnitine body stores. Therefore, heterozygous juvenile visceral steatosis (jvs)(+/-) mice, an animal model with decreased carnitine stores caused by impaired renal reabsorption of carnitine, and the corresponding wild-type mice were treated with subtoxic oral doses of VPA (0.1 g/g b.wt./day) for 2 weeks. In jvs(+/-) mice, but not in wild-type mice, treatment with VPA was associated with the increased plasma activity of aspartate aminotransferase and alkaline phosphatase. Furthermore, jvs(+/-) mice revealed reduced palmitate metabolism assessed in vivo and microvesicular steatosis of the liver. The creatine kinase activity was not affected by treatment with VPA. In liver mitochondria isolated from mice that were treated with VPA, oxidative metabolism of l-glutamate, succinate, and palmitate, as well as beta-oxidation of palmitate, were decreased compared to vehicle-treated wild-type mice or jvs(+/-) mice. In comparison to vehicle-treated wild-type mice, vehicle-treated jvs(+/-) mice had decreased carnitine plasma and tissue levels. Treatment with VPA was associated with an additional decrease in carnitine plasma (wild-type mice and jvs(+/-) mice) and tissue levels (jvs(+/-) mice) and a shift of the carnitine pools toward short-chain acylcarnitines. We conclude that jvs(+/-) mice reveal a more accentuated hepatic toxicity by VPA than the corresponding wild-type mice. Therefore, decreased carnitine body stores can be regarded as a risk factor for hepatotoxicity associated with VPA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to plasma metabolites and hormones participating as humoral signals in the control of feed intake, oxidative metabolic processes in peripheral organs also generate signals to terminate feeding. Although the degree of oxidation over longer periods is relatively constant, recent work suggests that the periprandial pattern of fuel oxidation is involved in regulating feeding behavior in the bovine. However, the association between periprandial oxidative metabolism and feed intake of dairy cows has not yet been studied. Therefore, the aim of this study was to elucidate possible associations existing between single feed intake events and whole-body net fat and net carbohydrate oxidation as well as their relation to plasma metabolite concentrations. To this end, 4 late-lactating cows equipped with jugular catheters were kept in respiratory chambers with continuous and simultaneous recording of gas exchange and feed intake. Animals were fed ad libitum (AL) for 24h and then feed restricted (RE) to 50% of the previous AL intake for a further 24h. Blood samples were collected hourly to analyze β-hydroxybutyrate (BHBA), glucose, nonesterified fatty acids (NEFA), insulin, and acylated ghrelin concentrations. Cross-correlation analysis revealed an offset ranging between 30 and 42 min between the maximum of a feed intake event and the lowest level of postprandial net fat oxidation (FOX(net)) and the maximum level of postprandial net carbohydrate oxidation (COX(net)), respectively. During the AL period, FOX(net) did not increase above -0.2g/min, whereas COX(net) did not decrease below 6g/min before the start of the next feed intake event. A strong inverse cross-correlation was obtained between COX(net) and plasma glucose concentration. Direct cross-correlations were observed between COXnet and insulin, between heat production and BHBA, between insulin and glucose, and between BHBA and ghrelin. We found no cross-correlation between FOX(net) and NEFA. During RE, FOX(net) increased with an exponential slope, exceeded the threshold of -0.2g/min as indicated by increasing plasma NEFA concentrations, and approached a maximum rate of 0.1g/min, whereas COX(net) decayed in an exponential manner, approaching a minimal COX(net) rate of about 2.5 g/min in all cows. Our novel findings suggest that, in late-lactating cows, postprandial increases in metabolic oxidative processes seem to signal suppression of feed intake, whereas preprandially an accelerated FOX(net) rate and a decelerated COX(net) rate initiate feed intake.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In surgical animal studies anesthesia is used regularly. Several reports in the literature demonstrate respiratory and cardiovascular side effects of anesthesiologic agents. The aim of this study was to compare two frequently used anesthesia cocktails (ketamine/xylazine [KX] versus medetomidine/climazolam/fentanyl [MCF]) in skin flap mouse models. Systemic blood values, local metabolic parameters, and surgical outcome should be analyzed in critical ischemic skin flap models. Systemic hypoxia was found in the animals undergoing KX anesthesia compared with normoxia in the MCF group (sO(2): 89.2% +/- 2.4% versus 98.5% +/- 1.2%, P < 0.01). Analysis of tissue metabolism revealed impaired anaerobic oxygen metabolism and increased cellular damage in critical ischemic flap tissue under KX anesthesia (lactate/pyruvate ratio: KX 349.86 +/- 282.38 versus MCF 64.53 +/- 18.63; P < 0.01 and glycerol: KX 333.50 +/- 83.91 micromol/L versus MCF 195.83 +/- 29.49 micromol/L; P < 0.01). After 6 d, different rates of flap tissue necrosis could be detected (MCF 57% +/- 6% versus KX 68% +/- 6%, P < 0.01). In summary we want to point out that the type of anesthesia, the animal model and the goal of the study have to be well correlated. Comparing the effects of KX and MCF anesthesia in mice on surgical outcome was a novel aspect of our study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intrasexual selection on body coloration is thought to play an important role in the evolution of colour polymorphism, but its physiological underpinnings have received limited attention. In the colour polymorphic cichlid Neochromis omnicaeruleus, three fully sympatric female colour morphs— a plain morph (P) and two conspicuously coloured blotched morphs, black-and-white blotched (WB) and orange blotched (OB)—differ in agonistic behaviour. We compared routine metabolic rate (when females were housed in social isolation), short-term energetic costs of interacting with a same-colour rival housed in an adjacent transparent chamber and oxidative stress between the three female colour morphs. WB females had a lower routine metabolic rate compared with the other colour morphs. WB females also had a lower active metabolic rate during inter-female interactions than OB females, while OB females used more oxygen per unit aggressive act than the other two colour morphs. However, there were no consistent differences in oxidative stress between the three morphs. Concerted divergence in colour, behaviour and metabolism might contribute to the evolution of these polymorphisms in sympatry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocellular cancer is the fifth most frequent cancer in men and the eighth in women worldwide. Established risk factors are chronic hepatitis B and C infection, chronic heavy alcohol consumption, obesity and type 2 diabetes, tobacco use, use of oral contraceptives, and aflatoxin-contaminated food. Almost 90% of all hepatocellular carcinomas develop in cirrhotic livers. In Western countries, attributable risks are highest for cirrhosis due to chronic alcohol abuse and viral hepatitis B and C infection. Among those with alcoholic cirrhosis, the annual incidence of hepatocellular cancer is 1-2%. An important mechanism implicated in alcohol-related hepatocarcinogenesis is oxidative stress from alcohol metabolism, inflammation, and increased iron storage. Ethanol-induced cytochrome P-450 2E1 produces various reactive oxygen species, leading to the formation of lipid peroxides such as 4-hydroxy-nonenal. Furthermore, alcohol impairs the antioxidant defense system, resulting in mitochondrial damage and apoptosis. Chronic alcohol exposure elicits hepatocyte hyperregeneration due to the activation of survival factors and interference with retinoid metabolism. Direct DNA damage results from acetaldehyde, which can bind to DNA, inhibit DNA repair systems, and lead to the formation of carcinogenic exocyclic DNA etheno adducts. Finally, chronic alcohol abuse interferes with methyl group transfer and may thereby alter gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoxia is an important modulator of the skeletal muscle's oxidative phenotype. However, little is known regarding the molecular circuitry underlying the muscular hypoxia response and the interaction of hypoxia with other stimuli of muscle oxidative capacity. We hypothesized that exposure of mice to severe hypoxia would promote the expression of genes involved in capillary morphogenesis and glucose over fatty acid metabolism in active or disused soleus muscle of mice. Specifically, we tested whether the hypoxic response depends on oxygen sensing via the alpha-subunit of hypoxia-inducible factor-1 (HIF-1 alpha). Spontaneously active wildtype and HIF-1 alpha heterozygous deficient adult female C57B1/6 mice were subjected to hypoxia (PiO2 70 mmHg). In addition, animals were subjected to hypoxia after 7 days of muscle disuse provoked by hindlimb suspension. Soleus muscles were rapidly isolated and analyzed for transcript level alterations with custom-designed AtlasTM cDNA expression arrays (BD Biosciences) and cluster analysis of differentially expressed mRNAs. Multiple mRNA elevations of factors involved in dissolution and stabilization of blood vessels, glycolysis, and mitochondrial respiration were evident after 24 hours of hypoxia in soleus muscle. In parallel transcripts of fat metabolism were reduced. A comparable hypoxia-induced expression pattern involving complex alterations of the IGF-I axis was observed in reloaded muscle after disuse. This hypoxia response in spontaneously active animals was blunted in the HIF-1 alpha heterozygous deficient mice demonstrating 35% lower HIF-1 alpha mRNA levels. Our molecular observations support the concept that severe hypoxia provides HIF-1-dependent signals for remodeling of existing blood vessels, a shift towards glycolytic metabolism and altered myogenic regulation in oxidative mouse muscle and which is amplified by enhanced muscle use. These findings further imply differential mitochondrial turnover and a negative role of HIF-1 alpha for control of fatty acid oxidation in skeletal muscle exposed to one day of severe hypoxia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fructose-1,6-bisphosphate (FBP), an endogenous intermediate of glycolysis, protects the brain against ischemia-reperfusion injury. The mechanisms of FBP protection after cerebral ischemia are not well understood. The current study was undertaken to determine whether FBP protects primary neurons against hypoxia and oxidative stress by preserving reduced glutathione (GSH). Cultures of pure cortical neurons were subjected to oxygen deprivation, a donor of nitric oxide and superoxide radicals (3-morpholinosydnonimine), an inhibitor of glutathione synthesis (L-buthionine-sulfoximine) or glutathione reductase (1,3-bis(2-chloroethyl)-1-nitrosourea) in the presence or absence of FBP (3.5 mM). Neuronal viability was determined using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. FBP protected neurons against hypoxia-reoxygenation and oxidative stress under conditions of compromised GSH metabolism. The efficacy of FBP depended on duration of hypoxia and was associated with higher intracellular GSH concentration, an effect partly mediated via increased glutathione reductase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.