7 resultados para Oxidation of methanol
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Mechanistic investigations on the previously reported reduction of B-alkylcatecholboranes in the presence of methanol led to the disclosure of a new mechanism involving catechol as a reducing agent. More than just revising the mechanism of this reaction, we disclose here the surprising role of catechol, a chain breaking antioxidant, which becomes a source of hydrogen atoms in an efficient radical chain process
Resumo:
The highly cytotoxic diruthenium complex [(p-MeC(6)H(4)Pr(1))(2)Ru(2)(SC(6)H(4)-p-Me)(3)](+) (1), water-soluble as the chloride salt, is shown to efficiently catalyze oxidation of the thiols cysteine and glutathione to give the corresponding disulfides, which may explain its high in vitro anticancer activity.
Resumo:
Since 3-hydroxyanthranilic acid (3HAA), an oxidation product of tryptophan metabolism, is a powerful radical scavenger [Christen, S., Peterhans, E., ; Stocker, R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 2506], its reaction with peroxyl radicals was investigated further. Exposure to aqueous peroxyl radicals generated at constant rate under air from the thermolabile radical initiator 2,2'-azobis[2-amid-inopropane] hydrochloride (AAPH) resulted in rapid consumption of 3HAA with initial accumulation of its cyclic dimer, cinnabarinic acid (CA). The initial rate of formation of the phenoxazinone CA accounted for approximately 75% of the initial rate of oxidation of 3HAA, taking into account that 2 mol of 3HAA are required to form 1 mol of CA. Consumption of 3HAA under anaerobic conditions (where alkyl radicals are produced from AAPH) was considerably slower and did not result in detectable formation of CA. Addition of superoxide dismutase enhanced autoxidation of 3HAA as well as the initial rates of peroxyl radical-induced oxidation of 3HAA and formation of CA by approximately 40-50%, whereas inclusion of xanthine/xanthine oxidase decreased the rate of oxidation of 3HAA by approximately 50% and inhibited formation of CA almost completely, suggesting that superoxide anion radical (O2.-) was formed and reacted with reaction intermediate(s) to curtail formation of CA. Formation of CA was also observed when 3HAA was added to performed compound I of horseradish peroxidase (HRPO) or catalytic amounts of either HRPO, myeloperoxidase, or bovine liver catalase together with glucose/glucose oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
We carried out a comprehensive study of Au(1 1 1) oxidation–reduction in the presence of (hydrogen-) sulfate ions on ideally smooth and stepped Au(S)[n(1 1 1)-(1 1 1)] single crystal electrodes using cyclic voltammetry, in situ scanning tunneling microscopy (STM) and vibration spectroscopy, such as surface-enhanced infrared absorption spectroscopy (SEIRAS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Surface structure changes and the role of surface defects in the potential regions of double layer charging and gold oxidation/reduction are discussed based on cyclic voltammetry and in situ STM data. SEIRAS and SHINERS provide complementary information on the chemical nature of adsorbates. In particular, the potential-dependent formation and stability ranges of adsorbed sulfate, hydroxide-species and of gold surface oxide could be resolved in detail. Based on our experimental observations, we proposed new and extended mechanisms of gold surface oxidation and reduction in 1.0 M H2SO4 and 1.0 M Na2SO4.
Resumo:
Variations of the surface structure and composition of the Au(110) electrode during the formation/lifting of the surface reconstruction and during the surface oxidation/reduction in 0.1 M aqueous sulfuric acid were studied by cyclic voltammetry, scanning tunneling microscopy and shell-isolated nanoparticle enhanced Raman spectroscopy. Annealing of the Au(110) electrode leads to a thermally-induced reconstruction formed by intermixed (1×3) and (1×2) phases. In a 0.1 M H2SO4 solution, the decrease of the potential of the atomically smooth Au(110)-(1×1) surface leads to the formation of a range of structures with increasing surface corrugation. The electrochemical oxidation of the Au(110) surface starts by the formation of anisotropic atomic rows of gold oxide. At higher potentials we observed a disordered structure of the surface gold oxide, similar to the one found for the Au(111) surface.
Resumo:
In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.