5 resultados para Ovariectomized

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many metabolic hormones, growth hormone (GH), insulin-like growth factor-I (IGF-I) and insulin affect ovarian functions. However, whether ovarian steroid hormones affect metabolic hormones in cattle remains unknown. This study aimed to determine the effect of sex steroids on the plasma profiles of GH, IGF-I and insulin and their receptors in the liver and adipose tissues of dairy cows. Ovariectomized cows (n = 14) were randomly divided into four groups: control group (n = 3) was treated with saline on Day 0; oestradiol (E2) group (n = 3), with saline and 1 mg oestradiol benzoate (EB) on Day 0 and 5, respectively; progesterone (P4) group (n = 4) with two CIDRs (Pfizer Inc., Tokyo, Japan) from Day 0; and E2 + P4 group (n = 4) with two CIDRs on Day 0 that were removed on Day 6 and were immediately injected with 1 mg EB. The animals were euthanized after the experiment, and liver and adipose tissues samples were quantitatively analysed using real-time PCR for the expression of mRNA for the GH (GHR), IGF-I (IGFR-I) and insulin (IR) receptor mRNAs. Oestradiol benzoate significantly increased the number of peaks (p < 0.05), pulse amplitude (p < 0.05) and area under the curve (AUC; p < 0.01) for plasma GH; moreover, it increased plasma IGF-I concentration (p < 0.05), but it had no effect on the plasma insulin profile. P4 significantly decreased the AUC (p < 0.01), compared with the control group, whereas it did not affect the number of peaks and the amplitude of GH pulses. P4 + E2 did not affect the GH pulse profile. E2 increased the mRNA expression of GHR, IGFR-I and IR in the liver (p < 0.05), whereas both P4 and E2 + P4 did not change their expressions. Our results provide evidence that the metabolic and reproductive endocrine axes may regulate each other to ensure optimal reproductive and metabolic function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During osteoporosis induction in sheep, side effects of the steroids were observed in previous studies. The aim of this study was to improve the induction regimen consisting of ovariectomy, calcium/vitamin D- restricted diet and methylprednisolone (-MP)- medication with respect to the bone metabolism and to reduce the adverse side effects. Thirty-six ewes (age 6.5 +/- 0.6 years) were divided into four MP-administration groups (n = 9) with a total dose of 1800 mg MP: group 1: 20 mg/day, group 2: 60 mg/every third day, group 3: 3 x 500 mg and 1 x 300 mg at intervals of three weeks, group 4: weekly administration, starting at 70 mg and weekly reduction by 10 mg. After double-labelling with Calcein Green and Xylenol Orange, bone biopsy specimens were taken from the iliac crest (IC) at the beginning and four weeks after the last MP injection, and additionally from the vertebral body (VB) at the end of the experiment. Bone samples were processed into stained and fluorescent sections, static and dynamic measurements were performed. There were no significant differences for static parameters between the groups initially. The bone perimeter and the bone area values were significantly higher in the VB than in the IC (Pm: 26%, p < 0.0001, Ar: 11%, p < 0.0166). A significant decrease (20%) of the bone area was observed after corticosteroid-induced osteoporosis (p < 0.0004). For the dynamic parameters, no significant difference between the groups was found. Presence of Calcein Green and Xylenol Orange labels were noted in 50% of the biopsies in the IC, 100% in the VB. Group 3 showed the lowest prevalence of adverse side effects. The bone metabolism changes were observed in all four groups, and the VB bone metabolism was higher when compared to the IC. In conclusion, when using equal amounts of steroids adverse side effects can be reduced by decreasing the number of administrations without reducing the effect regarding corticosteroid-induced osteoporosis. This information is useful to reduce the discomfort of the animals in this sheep model of corticosteroid-induced osteoporosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sex hormones influence immune responses and the development of autoimmune diseases including MS and its animal model, EAE. Although it has been previously reported that ovariectomy could worsen EAE, the mechanisms implicated in the protective action of endogenous ovarian hormones have not been addressed. In this report, we now show that endogenous estrogens limit EAE development and CNS inflammation in adult female mice through estrogen receptor expression in the host non-hematopoietic tissues. We provide evidence that the enhancing effect of gonadectomy on EAE development was due to quantitative rather than qualitative changes in effector Th1 or Th17 cell recruitment into the CNS. Consistent with this observation, adoptive transfer of myelin oligodendrocyte glycoprotein-specific encephalitogenic CD4(+) T lymphocytes induced more severe EAE in ovariectomized mice as compared to normal female mice. Finally, we show that gonadectomy accelerated the early recruitment of inflammatory cells into the CNS upon adoptive transfer of encephalitogenic CD4(+) T cells. Altogether, these data show that endogenous estrogens, through estrogen receptor , exert a protective effect on EAE by limiting the recruitment of blood-derived inflammatory cells into the CNS.