6 resultados para Oryzomys scotti

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calretinin (CR) and calbindin D-28k (CB) are cytosolic EF-hand Ca(2+)-binding proteins and function as Ca(2+) buffers affecting the spatiotemporal aspects of Ca(2+) transients and possibly also as Ca(2+) sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG) niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR, and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ) neurogenic niche of the DG. Effects were evaluated (1) two and four weeks postnatally, during the transition period of the proliferative matrix to the adult state, and (2) in adult animals (3 months) to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: (1) to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and (2) it may contribute to retrograde signaling required for maintenance of the progenitor pool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homozygous mutations in the Reelin gene result in severe disruption of brain development. The histogenesis of layered regions, like the neocortex, hippocampus and the cerebellum, is most notably affected in mouse reeler mutants and similar traits are also present in mice lacking molecular components of the Reelin signalling pathway. Moreover, there is evidence for an additional role of Reelin in sustaining synaptic plasticity in adult networks. Nitric oxide is an important gaseous messenger that can modulate neuronal plasticity both in developing and mature synaptic networks and has been shown to facilitate synaptic changes in the hippocampus, cerebellum and olfactory bulb. We studied the distribution and content of neuronal nitric oxide synthase in the olfactory bulbs of reeler and wildtype mice. Immunocytochemistry reveals that Reelin and neuronal nitric oxide synthase containing interneurons are two distinct, non overlapping cell populations of the olfactory bulb. We show by in situ hybridization that both nitrergic and Reelin expressing cells represent only a subset of olfactory bulb GABAergic neurons. Immunoblots show that neuronal nitric oxide synthase protein content is decreased by two thirds in reeler mice causing a detectable loss of immunolabelled cells throughout the olfactory bulb of this strain. However, neuronal nitric oxide synthase mRNA levels, essayed by quantitative real-time RT-PCR, are unaffected in the reeler olfactory bulb. Thus, disruption of the Reelin signalling pathway may modify the turnover of neuronal nitric oxide synthase in the olfactory bulb and possibly affects nitric oxide functions in reeler mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) and Reelin both modulate neuronal plasticity in developing and mature synaptic networks. We recently showed a loss of neuronal nitric oxide synthase (nNOS) protein in the olfactory bulb of reeler mutants and advanced the hypothesis that the Reelin and NO signalling pathways may influence each other. We now studied the distribution of NO sensitive guanylyl cyclase (NOsGC), Reelin and its receptor Apolipoprotein E2 (ApoEr2) in the olfactory bulb by multiple fluorescence labelling and tested whether nNOS and ApoEr2 colocalize in this area. We also essayed the protein content of NOsGC in the reeler olfactory bulb and tested whether there are any changes in nNOS and NOsGC protein in other reeler brain areas. Olfactory bulb interneurons expressing ApoEr2 and nNOS are only few in the glomerular layer but represent the large majority of granule cell layer interneurons. Conversely, NOsGC interneurons are rare in the granule cell layer and abundant as periglomerular cells. Reelin containing periglomerular cells almost entirely belong to the NOsGC subset. These data further support the hypothesis of a reciprocal signalling between Reelin/NOsGC and ApoEr2/nNOS expressing neurons to affect olfactory bulb activity. We also show that a significant rise in NOsGC content accompanies the decrease of nNOS protein in the reeler olfactory bulb. The same reciprocal changes present in the cortex/striatum and the hippocampus of reeler mice. Thus, the influence that the deficit of extracellular Reelin seems to exert on nNOS and its receptor is not limited to the olfactory bulb but is a general feature of the reeler brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An odorant's code is represented by activity in a dispersed ensemble of olfactory sensory neurons in the nose, activation of a specific combination of groups of mitral cells in the olfactory bulb and is considered to be mapped at divergent locations in the olfactory cortex. We present here an in vitro model of the mammalian olfactory system developed to gain easy access to all stations of the olfactory pathway. Mouse olfactory epithelial explants are cocultured with a brain slice that includes the olfactory bulb and olfactory cortex areas and maintains the central olfactory pathway intact and functional. Organotypicity of bulb and cortex is preserved and mitral cell axons can be traced to their target areas. Calcium imaging shows propagation of mitral cell activity to the piriform cortex. Long term coculturing with postnatal olfactory epithelial explants restores the peripheral olfactory pathway. Olfactory receptor neurons renew and progressively acquire a mature phenotype. Axons of olfactory receptor neurons grow out of the explant and rewire into the olfactory bulb. The extent of reinnervation exhibits features of a postlesion recovery. Functional imaging confirms the recovery of part of the peripheral olfactory pathway and shows that activity elicited in olfactory receptor neurons or the olfactory nerves is synaptically propagated into olfactory cortex areas. This model is the first attempt to reassemble a sensory system in culture, from the peripheral sensor to the site of cortical representation. It will increase our knowledge on how neuronal circuits in the central olfactory areas integrate sensory input and counterbalance damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reelin is an extracellular matrix glycoprotein expressed in different nerve cell populations in the developing, early postnatal and adult central nervous system. During histogenesis of the neocortex and hippocampus, reelin is present in Cajal-Retzius cells and other early neurons and contributes to correct layering of these regions. During early postnatal life, pioneer neurons disappear and reelin expression establishes in a subpopulation of cortical and hippocampal GABAergic interneurons, where it is maintained throughout adult life. We studied the developmental distribution pattern of reelin in dissociated cultures obtained from the early postnatal hippocampus to verify whether or not such a maturation phenomenon is maintained in vitro. Reelin is expressed both in Cajal-Retzius cells and multipolar and pyramidal neurons in younger cultures. The density of reelin-positive Cajal-Retzius cells dropped drastically by about 84% in 4-week-old cultures. Multipolar and pyramidal neurons containing reelin represented 12% of the total cell population in younger cultures and decreased by about 25% after 3 to 4 weeks of cultivation. Their density was significantly lower in cultures of the same age treated with glutamate receptor antagonists. These reelin-positive multipolar and pyramidal neurons were heterogeneous, including a larger amount of non-GABAergic, and 30-40% of GABAergic neurons. Cells double labeled for reelin and the GABA synthesizing enzyme glutamic acid decarboxylase represented about 4% of the total neuron population in culture and their density remained constant with age. It is thus possible that the decrease in the total reelin population may selectively be of importance to the larger non-GABAergic fraction of reelin cells. This study shows that reelin-expressing neurons are maintained in dissociated cultures of the neonatal hippocampus and their distribution and age-dependent changes in density resemble those of the early postnatal hippocampus in vivo.