9 resultados para Orthopedic fixation devices
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Medial open wedge high tibial osteotomy is a well-established procedure for the treatment of unicompartmental osteoarthritis and symptomatic varus malalignment. We hypothesized that different fixation devices generate different fixation stability profiles for the various wedge sizes in a finite element (FE) analysis. METHODS Four types of fixation were compared: 1) first and 2) second generation Puddu plates, and 3) TomoFix plate with and 4) without bone graft. Cortical and cancellous bone was modelled and five different opening wedge sizes were studied for each model. Outcome measures included: 1) stresses in bone, 2) relative displacement of the proximal and distal tibial fragments, 3) stresses in the plates, 4) stresses on the upper and lower screw surfaces in the screw channels. RESULTS The highest load for all fixation types occurred in the plate axis. For the vast majority of the wedge sizes and fixation types the shear stress (von Mises stress) was dominating in the bone independent of fixation type. The relative displacements of the tibial fragments were low (in μm range). With an increasing wedge size this displacement tended to increase for both Puddu plates and the TomoFix plate with bone graft. For the TomoFix plate without bone graft a rather opposite trend was observed.For all fixation types the occurring stresses at the screw-bone contact areas pulled at the screws and exceeded the allowable threshold of 1.2 MPa for at least one screw surface. Of the six screw surfaces that were studied, the TomoFix plate with bone graft showed a stress excess of one out of twelve and without bone graft, five out of twelve. With the Puddu plates, an excess stress occurred in the majority of screw surfaces. CONCLUSIONS The different fixation devices generate different fixation stability profiles for different opening wedge sizes. Based on the computational simulations, none of the studied osteosynthesis fixation types warranted an intransigent full weight bearing per se. The highest fixation stability was observed for the TomoFix plates and the lowest for the first generation Puddu plate. These findings were revealed in theoretical models and need to be validated in controlled clinical settings.
Resumo:
AIMS: To identify the rates and reasons for plate removal (PR) among patients treated for facial fractures. MATERIALS AND METHODS: A retrospective review of files of 238 patients. RESULTS: Forty-eight patients (20.2%) had plates removed. The reason for removal was objective in 33.3% and subjective in 29.2%. The most common subjective reason was cold sensitivity, and the most common objective reason was wound dehiscence/infection. Women had PR for subjective reasons more often than men (p=0.018). Removal was performed more often for subjective reasons after zygomatico-orbital fractures than after mandibular fractures (p=0.002). Plates inserted in the mandible from an intraoral approach were removed more frequently than extraorally inserted mandibular plates, intraorally inserted maxillary plates, and extraorally inserted plates in other locations (p<0.001). Orbital rim plates had a higher risk of being removed than maxillary or frontal bone plates (p=0.02). CONCLUSIONS: Subjective discomfort is a notable reason for PR among Finnish patients, suggesting that the cold climate has an influence on the need for removal. Patients receiving mandibular osteosynthesis with miniplates from an intraoral approach are at risk of hardware removal because of wound dehiscence/infection and loose/broken hardware, reminding us that more rigid fixation devices should not be forgotten despite the widespread use of miniplates.
Resumo:
STUDY DESIGN Biomechanical cadaveric study. OBJECTIVE To determine whether augmentation positively influence screw stability or not. SUMMARY OF BACKGROUND DATA Implantation of pedicle screws is a common procedure in spine surgery to provide an anchorage of posterior internal fixation into vertebrae. Screw performance is highly correlated to bone quality. Therefore, polymeric cement is often injected through specifically designed perforated pedicle screws into osteoporotic bone to potentially enhance screw stability. METHODS Caudocephalic dynamic loading was applied as quasi-physiological alternative to classical pull-out tests on 16 screws implanted in osteoporotic lumbar vertebrae and 20 screws in nonosteoporotic specimen. Load was applied using 2 different configurations simulating standard and dynamic posterior stabilization devices. Screw performance was quantified by measurement of screwhead displacement during the loading cycles. To reduce the impact of bone quality and morphology, screw performance was compared for each vertebra and averaged afterward. RESULTS All screws (with or without cement) implanted in osteoporotic vertebrae showed lower performances than the ones implanted into nonosteoporotic specimen. Augmentation was negligible for screws implanted into nonosteoporotic specimen, whereas in osteoporotic vertebrae pedicle screw stability was significantly increased. For dynamic posterior stabilization system an increase of screwhead displacement was observed in comparison with standard fixation devices in both setups. CONCLUSION Augmentation enhances screw performance in patients with poor bone stock, whereas no difference is observed for patients without osteoporosis. Furthermore, dynamic stabilization systems have the possibility to fail when implanted in osteoporotic bone.
Resumo:
Delayed fracture healing and non-unions represent rare but severe complications in orthopedic surgery. Further knowledge on the mechanisms of the bone repair process and of the development of a pseudoarthrosis is essential to predict and prevent impaired healing of fractures. The present study aimed at elucidating differences in gene expression during the repair of rigidly and non-rigidly fixed osteotomies. For this purpose, the MouseFix™ and the FlexiPlate™ systems (AO Development Institute, Davos, CH), allowing the creation of well defined osteotomies in mouse femora, were employed. A time course following the healing process of the osteotomy was performed and bones and periimplant tissues were analyzed by high-resolution X-ray, MicroCT and by histology. For the assessment of gene expression, Low Density Arrays (LDA) were done. In animals with rigid fixation, X-ray and MicroCT revealed healing of the osteotomy within 3 weeks. Using the FlexiPlate™ system, the osteotomy was still visible by X-ray after 3 weeks and a stabilizing cartilaginous callus was formed. After 4.5 weeks, the callus was remodeled and the osteotomy was, on a histological level, healed. Gene expression studies revealed levels of transcripts encoding proteins associated with inflammatory processes not to be altered in tissues from bones with rigid and non-rigid fixation, respectively. Levels of transcripts encoding proteins of the extracellular matrix and essential for bone cell functions were not increased in the rigidly fixed group when compared to controls without osteotomy. In the FlexiPlate™ group, levels of transcripts encoding the same set of genes were significantly increased 3 weeks after surgery. Expression of transcripts encoding BMPs and BMP antagonists was increased after 3 weeks in repair tissues from bones fixed with FlexiPlate™, as were inhibitors of the WNT signaling pathways. Little changes only were detected in transcript levels of tissues from rigidly fixed bones. The data of the present study suggest that rigid fixation enables accelerated healing of an experimental osteotomy as compared to non-rigid fixation. The changes in the healing process after non-rigid fixation are accompanied by an increase in the levels of transcripts encoding inhibitors of osteogenic pathways and, probably as a consequence, by temporal changes in bone matrix synthesis.
Resumo:
PURPOSE: To evaluate selective and superselective catheter therapy of serious arterial damage associated with orthopedic surgery of the pelvis, hip joint, femur, and knee. MATERIALS AND METHODS: Between 1989 and 2005, 16 consecutive patients with arterial damage after orthopedic surgery (seven women, nine men; mean age, 62 years; age range, 21-82 y) underwent angiographic exploration. Seven patients were in hemodynamically unstable condition. Initial orthopedic procedures were iliac crest internal fixation (n = 1); total hip prosthesis (n = 3); revision of total hip prosthesis (n = 4); revision of acetabular cup prosthesis (n = 1); gamma-nailing, nail-plate fixation, or intramedullary nailing (n = 3); and total knee prosthesis (n = 4). RESULTS: Angiography showed pseudoaneurysms (n = 11), vascular lacerations with active extravasation (n = 3), and arteriovenous fistulas with extravasation (n = 2). After angiographic documentation of serious arterial injury, 14 patients were treated with a single or coaxial catheter technique in combination with coils alone, coils and polyvinyl alcohol particles, coils and Gelfoam pledgets, or Gelfoam pledgets; or balloon occlusion with isobutyl cyanoacrylate and coils. Two patients were treated with covered stents. In all, bleeding was effectively controlled in a single session in 16 patients, with immediate circulatory stabilization. Major complications included death, pulmonary embolism, and postprocedural hematoma. CONCLUSION: Selective and superselective catheter therapy may be used for effective, minimally invasive management of rare but potentially life-threatening vascular complications after orthopedic surgery.
Resumo:
Pedicle hooks which are used as an anchorage for posterior spinal instrumentation may be subjected to considerable three-dimensional forces. In order to achieve stronger attachment to the implantation site, hooks using screws for additional fixation have been developed. The failure loads and mechanisms of three such devices have been experimentally determined on human thoracic vertebrae: the Universal Spine System (USS) pedicle hook with one screw, a prototype pedicle hook with two screws and the Cotrel-Dubousset (CD) pedicle hook with screw. The USS hooks use 3.2-mm self-tapping fixation screws which pass into the pedicle, whereas the CD hook is stabilised with a 3-mm set screw pressing against the superior part of the facet joint. A clinically established 5-mm pedicle screw was tested for comparison. A matched pair experimental design was implemented to evaluate these implants in constrained (series I) and rotationally unconstrained (series II) posterior pull-out tests. In the constrained tests the pedicle screw was the strongest implant, with an average pull-out force of 1650 N (SD 623 N). The prototype hook was comparable, with an average failure load of 1530 N (SD 414 N). The average pull-out force of the USS hook with one screw was 910 N (SD 243 N), not significantly different to the CD hook's average failure load of 740 N (SD 189 N). The result of the unconstrained tests were similar, with the prototype hook being the strongest device (average 1617 N, SD 652 N). However, in this series the difference in failure load between the USS hook with one screw and the CD hook was significant. Average failure loads of 792 N (SD 184 N) for the USS hook and 464 N (SD 279 N) for the CD hook were measured. A pedicular fracture in the plane of the fixation screw was the most common failure mode for USS hooks.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
BACKGROUND CONTEXT: Closed reduction and internal fixation by an anterior approach is an established option for operative treatment of displaced Type II odontoid fractures. In elderly patients, however, inadequate screw purchase in osteoporotic bone can result in severe procedure-related complications. PURPOSE: To improve the stability of odontoid fracture screw fixation in the elderly using a new technique that includes injection of polymethylmethacrylat (PMMA) cement into the C2 body. STUDY DESIGN: Retrospective review of hospital and outpatient records as well as radiographs of elderly patients treated in a university hospital department of orthopedic surgery. PATIENT SAMPLE: Twenty-four elderly patients (8 males and 16 females; mean age, 81 years; range, 62-98 years) with Type II fractures of the dens. OUTCOME MEASURES: Complications, cement leakage (symptomatic/asymptomatic), operation time, loss of reduction, pseudarthrosis and revision surgery, patient complaints, return to normal activities, and signs of neurologic complications were all documented. METHODS: After closed reduction and anterior approach to the inferior border of C2, a guide wire is advanced to the tip of the odontoid under biplanar fluoroscopic control. Before the insertion of one cannulated, self-drilling, short thread screws, a 12 gauge Yamshidi cannula is inserted from anterior and 1 to 3 mL of high-viscosity PMMA cement is injected into the anteroinferior portion of the C2 body. During polymerization of the cement, the screws are further inserted using a lag-screw compression technique. The cervical spine then is immobilized with a soft collar for 8 weeks postoperatively. RESULTS: Anatomical reduction of the dens was achieved in all 24 patients. Mean operative time was 64 minutes (40-90 minutes). Early loss of reduction occurred in three patients, but revision surgery was indicated in only one patient 2 days after primary surgery. One patient died within the first eight postoperative weeks, one within 3 months after surgery. In five patients, asymptomatic cement leakage was observed (into the C1-C2 joint in three patients, into the fracture in two). Conventional radiologic follow-up at 2 and 6 months confirmed anatomical healing in 16 of the19 patients with complete follow-up. In two patients, the fractures healed in slight dorsal angulation; one patient developed a asymptomatic pseudarthrosis. All patients were able to resume their pretrauma level of activity. CONCLUSIONS: Cement augmentation of the screw in Type II odontoid fractures in elderly patients is technically feasible in a clinical setting with a low complication rate. This technique may improve screw purchase, especially in the osteoporotic C2 body.
Resumo:
Introduced about two decades ago, computer-assisted orthopedic surgery (CAOS) has emerged as a new and independent area, due to the importance of treatment of musculoskeletal diseases in orthopedics and traumatology, increasing availability of different imaging modalities, and advances in analytics and navigation tools. The aim of this paper is to present the basic elements of CAOS devices and to review state-of-the-art examples of different imaging modalities used to create the virtual representations, of different position tracking devices for navigation systems, of different surgical robots, of different methods for registration and referencing, and of CAOS modules that have been realized for different surgical procedures. Future perspectives will also be outlined.