43 resultados para Orthogonal Arrays
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Accumulating evidence indicates that agrin, a heparan sulphate proteoglycan of the extracellular matrix, plays a role in the organization and maintenance of the blood-brain barrier. This evidence is based on the differential effects of agrin isoforms on the expression and distribution of the water channel protein, aquaporin-4 (AQP4), on the swelling capacity of cultured astrocytes of neonatal mice and on freeze-fracture data revealing an agrin-dependent clustering of orthogonal arrays of particles (OAPs), the structural equivalent of AQP4. Here, we show that the OAP density in agrin-null mice is dramatically decreased in comparison with wild-types, by using quantitative freeze-fracture analysis of astrocytic membranes. In contrast, anti-AQP4 immunohistochemistry has revealed that the immunoreactivity of the superficial astrocytic endfeet of the agrin-null mouse is comparable with that in wild-type mice. Moreover, in vitro, wild-type and agrin-null astrocytes cultured from mouse embryos at embryonic day 19.5 differ neither in AQP4 immunoreactivity, nor in OAP density in freeze-fracture replicas. Analyses of brain tissue samples and cultured astrocytes by reverse transcription with the polymerase chain reaction have not demonstrated any difference in the level of AQP4 mRNA between wild-type astrocytes and astrocytes from agrin-null mice. Furthermore, we have been unable to detect any difference in the swelling capacity between wild-type and agrin-null astrocytes. These results clearly demonstrate, for the first time, that agrin plays a pivotal role for the clustering of OAPs in the endfoot membranes of astrocytes, whereas the mere presence of AQP4 is not sufficient for OAP clustering.
Resumo:
In multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE), dysfunction of the blood-brain barrier (BBB) leads to edema formation within the central nervous system. The molecular mechanisms of edema formation in EAE/MS are poorly understood. We hypothesized that edema formation is due to imbalanced water transport across the BBB caused by a disturbed crosstalk between BBB endothelium and astrocytes. Here, we demonstrate at the light microscopic and ultrastructural level, the loss of polarized localization of the water channel protein aquaporin-4 (AQP4) in astrocytic endfeet surrounding microvessels during EAE. AQP4 was found to be redistributed over the entire astrocytic cell surface and lost its arrangement in orthogonal arrays of intramembranous particles as seen in the freeze-fracture replica. In addition, immunostaining for the astrocytic extracellular matrix receptor beta-dystroglycan disappeared from astroglial membranes in the vicinity of inflammatory cuffs, whereas immunostaining for the dystroglycan ligands agrin and laminin in the perivascular basement membrane remained unchanged. Our data suggest that during EAE, loss of beta-dystroglycan-mediated astrocyte foot process anchoring to the basement membrane leads to loss of polarized AQP4 localization in astrocytic endfeet, and thus to edema formation in EAE.
Resumo:
PURPOSE Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose X-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. METHODS Tissue responses to MRT (two orthogonal arrays (2 × 400Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MR_SO2) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. RESULTS In tumors, MR_SO2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MR_SO2, although vessel inter-distances increased slightly. CONCLUSION We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia.
Resumo:
Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.
Resumo:
To propose the determination of the macromolecular baseline (MMBL) in clinical 1H MR spectra based on T(1) and T(2) differentiation using 2D fitting in FiTAID, a general Fitting Tool for Arrays of Interrelated Datasets.
On the multivariate Huesler-Reiss distribution attracting the maxima of elliptical triangular arrays