16 resultados para Organ Development

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid organ transplant recipients (SOTR) have an increased risk of skin cancer due to their long-term immunosuppressive state. As the number of these patients is increasing, as well as their life expectancy, it is important to discuss the screening and management of skin cancer in this group of patients. The role of the dermatologist, in collaboration with the transplant team, is important both before transplantation, where patients are screened for skin lesions and the individual risk for skin cancer development is assessed, and after transplantation. Posttransplant management consists of regular dermatological consultations (the frequency depends on different factors discussed below), where early skin cancer screening and management, as well as patient education on sun protective behavior is taught and enforced. Indeed, SOTR are very sensitive to sun damage due to their immunosuppressive state, leading to cumulative sun damage which results in field cancerization with numerous lesions such as in situ squamous cell carcinoma, actinic keratosis and Bowen's disease. These lesions should be recognized and treated as early as possible. Therapeutic options discussed will involve topical therapy, surgical management, adjustment of the patient's immunosuppressive therapy (i.e. reduction of immunosuppression and/or switch to mammalian target of rapamycin inhibitors) and chemoprevention with the retinoid acitretin, which reduces the recurrence rate of squamous cell carcinoma. The dermatological follow-up of SOTR should be integrated into the comprehensive posttransplant care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth and sexual development are closely interlinked in fish; however, no reports exist on potential effects of estrogen on the GH/IGF-I-axis in developing fish. We investigate whether estrogen exposure during early development affects growth and the IGF-I system, both at the systemic and tissue level. Tilapia were fed from 10 to 40 days post fertilization (DPF) with 17alpha-ethinylestradiol (EE(2)). At 50, 75, 90, and 165 DPF, length, weight, sex ratio, serum IGF-I (RIA), pituitary GH mRNA and IGF-I, and estrogen receptor alpha (ERalpha) mRNA in liver, gonads, brain, and gills (real-time PCR) were determined and the results correlated to those of in situ hybridization for IGF-I. Developmental exposure to EE(2) had persistent effects on sex ratio and growth. Serum IGF-I, hepatic IGF-I mRNA, and the number of IGF-I mRNA-containing hepatocytes were significantly decreased at 75 DPF, while liver ERalpha mRNA was significantly induced. At 75 DPF, a transient decline of IGF-I mRNA and a largely reduced number of IGF-I mRNA-containing neurons were observed in the female brain. In both sexes, pituitary GH mRNA was significantly suppressed. A transient downregulation of IGF-I mRNA occurred in ovaries (75 DPF) and testes (90 DPF). In agreement, in situ hybridization revealed less IGF-I mRNA signals in granulosa and germ cells. Our results show for the first time that developmental estrogen treatment impairs GH/IGF-I expression in fish, and that the effects persist. These long-lasting effects both seem to be exerted indirectly via inhibition of pituitary GH and directly by suppression of local IGF-I in organ-specific cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review deals with an important aspect of organ transplantation, namely the process of psychic organ integration and organ-related fantasies. The body schema and body self are two important concepts in the integration of a transplanted organ. Different models and theories on organ integration are presented and will be discussed. There is evidence that beside the emotional impact and the influence on well-being, organ integration depends closely on psychic processes involving in the incorporation of the transplanted organ and the respective organ-related fantasies. Therefore, these organ fantasies - whether unconscious or conscious - may play an important role in the future development of the instinctive and highly individual relation the patients elaborate with the new organ. Beside the concern with the new organ, a bereavement to the lost old and sick organ may also influence the patients thoughts. Moreover, the good resolving of all these issues evokes the "good practice" patients develop towards the new situation. This will bring up issues as compliance, infections, rejection episodes and - most important - also organ survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Endoderm organ primordia become specified between gastrulation and gut tube folding in Amniotes. Although the requirement for RA signaling for the development of a few individual endoderm organs has been established a systematic assessment of its activity along the entire antero-posterior axis has not been performed in this germ layer. METHODOLOGY/PRINCIPAL FINDINGS: RA is synthesized from gastrulation to somitogenesis in the mesoderm that is close to the developing gut tube. In the branchial arch region specific levels of RA signaling control organ boundaries. The most anterior endoderm forming the thyroid gland is specified in the absence of RA signaling. Increasing RA in anterior branchial arches results in thyroid primordium repression and the induction of more posterior markers such as branchial arch Hox genes. Conversely reducing RA signaling shifts Hox genes posteriorly in endoderm. These results imply that RA acts as a caudalizing factor in a graded manner in pharyngeal endoderm. Posterior foregut and midgut organ primordia also require RA, but exposing endoderm to additional RA is not sufficient to expand these primordia anteriorly. We show that in chick, in contrast to non-Amniotes, RA signaling is not only necessary during gastrulation, but also throughout gut tube folding during somitogenesis. Our results show that the induction of CdxA, a midgut marker, and pancreas induction require direct RA signaling in endoderm. Moreover, communication between CdxA(+) cells is necessary to maintain CdxA expression, therefore synchronizing the cells of the midgut primordium. We further show that the RA pathway acts synergistically with FGF4 in endoderm patterning rather than mediating FGF4 activity. CONCLUSIONS/SIGNIFICANCE: Our work establishes that retinoic acid (RA) signaling coordinates the position of different endoderm organs along the antero-posterior axis in chick embryos and could serve as a basis for the differentiation of specific endodermal organs from ES cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How instructive signals are translated into robust and predictable changes in growth is a central question in developmental biology. Recently, much interest has centered on the feedback between chemical instructions and mechanical changes for pattern formation in development. In plants, the patterned arrangement of aerial organs, or phyllotaxis, is instructed by the phytohormone auxin; however, it still remains to be seen how auxin is linked, at the apex, to the biochemical and mechanical changes of the cell wall required for organ outgrowth. Here, using Atomic Force Microscopy, we demonstrate that auxin reduces tissue rigidity prior to organ outgrowth in the shoot apex of Arabidopsis thaliana, and that the de-methyl-esterification of pectin is necessary for this reduction. We further show that development of functional organs produced by pectin-mediated ectopic wall softening requires auxin signaling. Lastly, we demonstrate that coordinated localization of the auxin transport protein, PIN1, is disrupted in a naked-apex produced by increasing cell wall rigidity. Our data indicates that a feedback loop between the instructive chemical auxin and cell wall mechanics may play a crucial role in phyllotactic patterning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The von Willebrand factor (VWF)-cleaving metalloprotease, ADAMTS13 (adisintegrin and metalloprotease with thrombospondin type 1 motifs-13) is the only known target of the dysregulated immune response in acquired TTP. Autoantibodies to ADAMTS13 either neutralize its activity or accelerate its clearance, thereby causing a severe deficiency of ADAMTS13 in plasma. As a consequence, size regulation of VWF is impaired and the persistence of ultra-large VWF (ULVWF) multimers facilitates microvascular platelet aggregation causing microangiopathic haemolytic anaemia and ischaemic organ damage. Autoimmune TTP although a rare disease with an annual incidence of 1.72 cases has a mortality rate of 20% even with adequate therapy. We describe the mechanisms involved in ADAMTS13 autoimmunity with a focus on the role of B- and T-cells in the pathogenesis of this disorder. We discuss the potential translation of recent experimental findings into future therapeutic concepts for the treatment of acquired TTP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At birth, the mammalian lung is still immature. The alveoli are not yet formed and the interairspace walls contain two capillary layers which are separated by an interstitial core. After alveolarization (first 2 postnatal weeks in rats) the alveolar septa mature: their capillary layers merge, the amount of connective tissue decreases, and the mature lung parenchyma is formed (second and third week). During the first 3 wk of life the role of tissue transglutaminase (tTG) was studied in rat lung by immunostaining of cryostat and paraffin sections, by Northern and Western blotting, and by a quantitative determination of gamma-glutamyl-epsilon-lysine. While enzyme activity and intracellular tTG were already present before term, the enzyme product (gamma-glutamyl-epsilon-lysine-crosslink) and extracellular tTG appeared between postnatal days 10 and 19 in the lung parenchyma. In large blood vessels and large airways, which mature earlier than the parenchyma, both the enzyme product and extracellular tTG had already appeared at the end of the first postnatal week. We conclude that tTG is expressed and externalized into the extracellular matrix of lung shortly before maturation of an organ area. Because tTG covalently and irreversibly crosslinks extracellular matrix proteins, we hypothesize that it may prevent or delay further remodeling of basement membranes and may stabilize other extracellular components, such as microfibrils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolomics is the global and unbiased survey of the complement of small molecules (say, <1 kDa) in a biofluid, tissue, organ or organism and measures the end-products of the cellular metabolism of both endogenous and exogenous substrates. Many drug candidates fail during Phase II and III clinical trials at an enormous cost to the pharmaceutical industry in terms of both time lost and of financial resources. The constantly evolving model of drug development now dictates that biomarkers should be employed in preclinical development for the early detection of likely-to-fail candidates. Biomarkers may also be useful in the preselection of patients and through the subclassification of diseases in clinical drug development. Here we show with examples how metabolomics can assist in the preclinical development phases of discovery, pharmacology, toxicology, and ADME. Although not yet established as a clinical trial patient prescreening procedure, metabolomics shows considerable promise in this regard. We can be certain that metabolomics will join genomics and transcriptomics in lubricating the wheels of clinical drug development in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postmortem MRI (PMMR) examinations are seldom performed in legal medicine due to long examination times, unfamiliarity with the technique, and high costs. Furthermore, it is difficult to obtain access to an MRI device used for patients in clinical settings to image an entire human body. An alternative is available: ex situ organ examination. To our knowledge, there is no standardized protocol that includes ex situ organ preparation and scanning parameters for postmortem MRI. Thus, our objective was to develop a standard procedure for ex situ heart PMMR examinations. We also tested the oily contrast agent Angiofil® commonly used for PMCT angiography, for its applicability in MRI. We worked with a 3 Tesla MRI device and 32-channel head coils. Twelve porcine hearts were used to test different materials to find the best way to prepare and place organs in the device and to test scanning parameters. For coronary MR angiography, we tested different mixtures of Angiofil® and different injection materials. In a second step, 17 human hearts were examined to test the procedure and its applicability to human organs. We established two standardized protocols: one for preparation of the heart and another for scanning parameters based on experience in clinical practice. The established protocols enabled a standardized technical procedure with comparable radiological images, allowing for easy radiological reading. The performance of coronary MR angiography enabled detailed coronary assessment and revealed the utility of Angiofil® as a contrast agent for PMMR. Our simple, reproducible method for performing heart examinations ex situ yields high quality images and visualization of the coronary arteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Between 2008 and 2012, commercial Swiss layer and layer breeder flocks experiencing problems in laying performance were sampled and tested for infection with Duck adenovirus A (DAdV-A; previously known as Egg drop syndrome 1976 virus). Organ samples from birds sent for necropsy as well as blood samples from living animals originating from the same flocks were analyzed. To detect virus-specific DNA, a newly developed quantitative real-time polymerase chain reaction method was applied, and the presence of antibodies against DAdV-A was tested using a commercially available enzyme-linked immunosorbent assay. In 5 out of 7 investigated flocks, viral DNA was detected in tissues. In addition, antibodies against DAdV-A were detected in all of the flocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of people who sustain hip fractures after a fall to the side would not have been identified using current screening techniques such as areal bone mineral density. Identifying them, however, is essential so that appropriate pharmacological or lifestyle interventions can be implemented. A protocol, demonstrated on a single specimen, is introduced, comprising the following components; in vitro biofidelic drop tower testing of a proximal femur; high-speed image analysis through digital image correlation; detailed accounting of the energy present during the drop tower test; organ level finite element simulations of the drop tower test; micro level finite element simulations of critical volumes of interest in the trabecular bone. Fracture in the femoral specimen initiated in the superior part of the neck. Measured fracture load was 3760 N, compared to 4871 N predicted based on the finite element analysis. Digital image correlation showed compressive surface strains as high as 7.1% prior to fracture. Voxel level results were consistent with high-speed video data and helped identify hidden local structural weaknesses. We found using a drop tower test protocol that a femoral neck fracture can be created with a fall velocity and energy representative of a sideways fall from standing. Additionally, we found that the nested explicit finite element method used allowed us to identify local structural weaknesses associated with femur fracture initiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one-year-old healthy sheep received an implant stenting the mural ('posterior') leaflet of the mitral valve. The experiment was authorized by the Cantonal Ethical Committee. The surgery was performed on the open, beating heart during cardiopulmonary bypass (CPB). Management of anaesthesia was based on isoflurane with mechanical intermittent positive pressure ventilation (IPPV) of the lungs, combined with intercostal nerve blocks and intravenous fentanyl and lidocaine. Marked cardiovascular depression occurred towards the end of CPB time and required high doses of dopamine, dobutamine, lidocaine and ephedrine to allow for weaning off the CPB pump. Moreover, severe pulmonary dysfunction developed when IPPV was re-initiated after CPB. Hypoxaemia persisted throughout the recovery from general anaesthesia. Multiple organ failure developed gradually during the three postoperative days, leading to euthanasia of the animal. As described in this case, marked lung injury associated with some degree of failure of other vital organs may occur in sheep after CPB. Intraoperative cardiorespiratory complications when weaning-off may indicate the development of 'post-pump syndrome'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tracing the history of individual cells during embryonic morphogenesis in a structure as complex as the cardiovascular system is one of the major challenges of developmental biology. It involves determining the relationships between the various lineages of cells forming an organ at different stages, describing the topological rearrangements tissues undergo during morphogenesis, and characterizing the interactions between cells in different structures. However, despite the great expectations raised in the field of regenerative medicine, only limited progress has been made in using regenerative therapy to repair the cardiovascular system. Recent research has highlighted the role of the epicardium during cardiac regeneration, but it is still unclear whether it is important for molecular signaling or acts as a source of progenitor cells during this process. Consequently, increasing knowledge about the origin, diversification and potential of epicardial cells during development and homeostasis and under pathological conditions is of fundamental importance both for basic research and for the development of effective cellular therapies. The aims of this article were to provide a general overview of the classical techniques used for tracing cell lineages, including their potential and limitations, and to describe novel techniques for studying the origin and differentiation of the epicardium and its role in cardiac regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease. This requires cardiomyocytes to be mechanically durable and able to mount coordinated responses to a variety of environmental signals on different time scales, including cardiac pressure loading and electrical and hemodynamic forces. During physiological growth, myocytes, endocardial and epicardial cells have to adaptively remodel to these mechanical forces. Here we review some of the recent advances in the understanding of how mechanical forces influence cardiac development, with a focus on fluid flow forces. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Develomental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.