31 resultados para Ordered mesoporous silica
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Introduction: Laser tissue fusion has a large potential for minimal invasive tissue fusion in different surgical specialties. We have developed a combined endovascular minimal invasive surgical technique to fuse blood vessels for bypass surgery. However, the main difficulty was to achieve reproducible results as the main tensile strength is a result of protein denaturation. We therefore aimed to develop a quantitative, reproducible tissue fusion using polycapsulated silica core nanoparticles containing indocyanine green (Si@PCL/ICG). Methods: In a first step we developed mesoporous indocyanine green (ICG) containing nanoparticles and assessed their heating profile. Furthermore the stability to light exposure and ICG degradation was measured. In a second phase Si@PCL/ICG nanoparticles for embedding into a biodegradeable implant was developed and characterized using differential scanning calomeritry technique (DSC). Results: ICG containing mesoporous silica nanoparticles showed a sufficient increase in temperature up to 80°C suitable for laser tissue fusion. However, long-term stability of ICG mesoporous nanoparticles is lost after 7 days of light exposure. In contrast Si@PCL/ICG nanoparticles demonstrated a strong heating capacity as well as a good DSC profile for laser tissue fusion and long-term stability of 3 weeks. Furthermore Si@PCL/ICG nanoparticles can be directly dispersed in spin-coated polycaprolactone polymer. Conclusion: Si@PCL/ICG nanoparticles have good long-term stability and polymer embedding properties suitable for laser tissue fusion.
Resumo:
Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.
Resumo:
Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic strength and buffer used and, at constant ionic strength, higher at alkaline pH. Electrokinetic separations and transport in such coated capillaries can be described with a dynamic computer model which permits the combined simulation of electrophoresis and electroosmosis in which the EOF is predicted either with a constant (i.e. pH- and ionic strength-independent) or a pH- and ionic strength-dependent electroosmotic mobility. Detector profiles predicted by computer simulation agree qualitatively well with bidirectional isotachopherograms that are monitored with a setup comprising two axial contactless conductivity detectors and a UV absorbance detector. The varying EOF predicted with a pH- and ionic strength-dependent electroosmotic mobility can be regarded as being realistic.
Resumo:
The first part of this paper provides a comprehensive and self-contained account of the interrelationships between algebraic properties of varieties and properties of their free algebras and equational consequence relations. In particular, proofs are given of known equivalences between the amalgamation property and the Robinson property, the congruence extension property and the extension property, and the flat amalgamation property and the deductive interpolation property, as well as various dependencies between these properties. These relationships are then exploited in the second part of the paper in order to provide new proofs of amalgamation and deductive interpolation for the varieties of lattice-ordered abelian groups and MV-algebras, and to determine important subvarieties of residuated lattices where these properties hold or fail. In particular, a full description is given of all subvarieties of commutative GMV-algebras possessing the amalgamation property.