101 resultados para Optically stimulated luminescence(OSL)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present an overview on different environmental zones within coastal areas and summarise the physical basis behind the three most important methods that are available to date Holocene coastal sediments. Besides radiocarbon and uranium series dating, Optically Stimulated Luminescence (Osl) has increasingly been applied for dating in coastal settings over the past decade. This is illustrated by a number of case studies showing that Osl can be applied to sediments from almost any kind of coastal environment, covering a potential dating range from some years up to several hundred thousand years. Osl dating may hence be the method of choice for deciphering natural environmental change along coasts as well as the presence and the impact of human occupation in such areas. In addition, we briefly show how and where these dating methods could be applied to constrain the palaeo-environmental context of an archaeological site at Vohemar in north-eastern Madagascar.
Resumo:
The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.
Resumo:
In the Bolivian Amazon several paleochannel generations are preserved. Their wide spectrum of morphologies clearly provides crucial information on the type and magnitude of geomorphic and hydrological changes within the drainage network of the Andean foreland. Therefore, in this study we mapped geomorphological characteristics of paleochannels, and applied radiocarbon and optically stimulated luminescence dating. Seven paleochannel generations are identified. Significant changes in sinuosity, channel widths and river pattern are observed for the successive paleochannel generations. Our results clearly reflect at least three different geomorphic and hydrological periods in the evolution of the fluvial system since the late Pleistocene. Changes in discharge and sediment load may be controlled by combinations of two interrelated mechanisms: (i) spatial changes and re-organizations of the drainage network in the upper catchment, and/or (ii) climate changes with their associated local to catchment-scale modifications in vegetation cover, and changes in discharge, inundation frequencies and magnitudes, which have likely affected the evolution of the fluvial system in the Llanos de Moxos. In summary, our study has revealed the enormous potential which geomorphic mapping and analysis combined with luminescence based chronologies hold for the reconstruction of the late Pleistocene to recent fluvial system in a large portion of Amazonia.
Resumo:
The reconstruction of thermal histories of rocks (thermochronometry) is a fundamental tool both in Earth science and in geological exploration. However, few methods are currently capable of resolving the low-temperature thermal evolution of the upper ∼2 km of the Earth's crust. Here we introduce a new thermochronometer based on the infrared stimulated luminescence (IRSL) from feldspar, and validate the extrapolation of its response to artificial radiation and heat in the laboratory to natural environmental conditions. Specifically, we present a new detailed Na-feldspar IRSL thermochronology from a well-documented thermally-stable crustal environment at the German Continental Deep Drilling Program (KTB). There, the natural luminescence of Na-feldspar extracted from twelve borehole samples (0.1–2.3 km depth, corresponding to 10–70 °C) can be either (i) predicted within uncertainties from the current geothermal gradient, or (ii) inverted into a geothermal palaeogradient of 29 ± 2 °C km−1, integrating natural thermal conditions over the last ∼65 ka. The demonstrated ability to invert a depth–luminescence dataset into a meaningful geothermal palaeogradient opens new venues for reconstructing recent ambient temperatures of the shallow crust (<0.3 Ma, 40–70 °C range), or for studying equally recent and rapid transient cooling in active orogens (<0.3 Ma, >200 °C Ma−1 range). Although Na-feldspar IRSL is prone to field saturation in colder or slower environments, the method's primary relevance appears to be for borehole and tunnel studies, where it may offer remarkably recent (<0.3 Ma) information on the thermal structure and history of hydrothermal fields, nuclear waste repositories and hydrocarbon reservoirs.
Resumo:
The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe–Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.
Resumo:
This work introduces two novel approaches for the application of luminescence dating techniques to Quaternary volcanic eruptions: crystalline xenoliths from lava flows are demonstrated to be basically suitable for luminescence dating, and a set of phreatic explosion deposits from the Late Quaternary Vakinankaratra volcanic field in central Madagascar is successfully dated with infrared stimulated luminescence (IRSL). Using a numerical model approach and experimental verification, the potential for thermal resetting of luminescence signals of xenoliths in lava flows is demonstrated. As microdosimetry is an important aspect when using sample material extracted from crystalline whole rocks, autoradiography using image plates is introduced to the field of luminescence dating as a method for detection and assessment of spatially resolved radiation inhomogeneities. Determinations of fading rates of feldspar samples have been observed to result in aberrant g-values if the pause between preheat and measurement in the delayed measurements was kept short. A systematic investigation reveals that the phenomenon is caused by the presence of three signal components with differing individual fading behaviour. As this is restricted to short pauses, it is possible to determine a minimal required delay between preheating and measurement after which the aberrant behaviour disappears. This is applied in the measuring of 12 samples from phreatic explosion deposits from the Antsirabe – Betafo region in the Late Quaternary Vakinankaratra volcanic field. The samples were taken from stratigraphically correlatable sections and appear to represent at least three phreatic events, one of which created the Lac Andraikiba maar near Antsirabe. The obtained ages indicate that the eruptive activity in the region started in the Late Pleistocene between 113.9 and 99.6 ka. A second layer in the Betafo area is dated at approximately 73 ka and the Lac Andraikiba deposits give an age between 63.9 and 50.7 ka. The youngest phreatic layer is dated between 33.7 and 20.7 ka. These ages are the first recorded direct ages of such volcanic deposits, as well as the first and only direct ages for the Late Quaternary volcanism in the Vakinankaratra volcanic field. This illustrates the huge potential of this new method for volcanology and geochronology, as it enables direct numerical dating of a type of volcanic deposit which has not been successfully directly dated by any other method so far.
Resumo:
Sr2+ co-doped LaBr3:5%Ce scintillators show a record low energy resolution of 2% at 662 keV and a considerably better proportional response compared to standard LaBr3:5%Ce. This paper reports on the optical properties and time response of Sr co-doped LaBr3:5%Ce. Multiple excitation and emission bands were observed in X-ray and optically excited luminescence measurements. Those bands are ascribed to three different Ce3+ sites. The first is the unperturbed site with the same luminescence properties as those of standard LaBr3:Ce. The other two are perturbed sites with red-shifted 4f-5d1 Ce3+ excitation and emission bands, longer Ce3+ decay times, and smaller Stokes shifts. The lowering of the lowest 5d level of Ce3+ was ascribed to larger crystal field interactions at the perturbed sites. Two types of point defects in the LaBr3 matrix were proposed to explain the observed results. No Ce4+ ions were detected in Sr co-doped LaBr3:5%Ce by diffuse reflectance measurements.
Resumo:
Infrared stimulated luminescence (IRSL) and post-IR IRSL are applied to small aliquots and single grains to determine the equivalent dose (De) of eleven alluvial and fluvial sediment samples collected in the Pativilca valley, Central Peru at ca. 10°S latitude. Small aliquot De distributions are rather symmetric and display over-dispersion values between 15 and 46%. Small aliquot g-values range between 4 and 8% per decade for the IRSL and 1 and 2% per decade for the post-IR IRSL signal. The single grain De distributions are highly over-dispersed with some of them skewed to higher doses, implying partial bleaching; this is especially true for the post-IR IRSL. Measurements of a modern analog reveal that residuals due to partial bleaching are present in both the IRSL as well as the post-IR IRSL signal. The g-values of individual grains exhibit a wide range with high individual uncertainties and might contribute significantly to the spread of the single grain De values, at least for the IRSL data. Electron Microprobe Analysis performed on single grains reveal that a varying K-content can be excluded as the origin of over-dispersion. Final ages for the different approaches are calculated using the Central Age Model and the Minimum Age Model (MAM). The samples are grouped into well-beached, potentially well-bleached and partially bleached according to the evaluation of the single grain distributions and the agreement of age estimates between methods. The application of the MAM to the single grain data resulted in consistent age estimates for both the fading corrected IRSL and the post-IR IRSL ages, and suggests that both approaches are suitable for dating these samples. Keywords
Resumo:
Diepkloof Rock Shelter offers an exceptional opportunity to study the onset and evolution of both Still Bay (SB) and Howiesons Poort (HP) techno-complexes. However, previous age estimates based on luminescence dating of burnt quartzites (Tribolo et al., 2009) and of sediments (Jacobs et al., 2008) were not in agreement. Here, we present new luminescence ages for 17 rock samples (equivalent dose estimated with a SAR-ITL protocol instead of classical MAAD-TL) as well as for 5 sediment samples (equivalent dose estimated with SAR-single grain OSL protocol) and an update of the 22 previous age estimates for burnt lithics (modified calibration and beta dose estimates). While a good agreement between the rock and sediment ages is obtained, these estimates are still significantly older than those reported by Jacobs et al. (2008). After our own analyses of the sediment from Diepkloof, it is suspected that these authors did not correctly chose the parameters for the equivalent dose determination, leading to an underestimate of the equivalent doses, and thus of the ages. From bottom to top, the mean ages are 100 ± 10 ka for stratigraphic unit (SU) Noël and 107 ± 11 ka for SU Mark (uncharacterized Lower MSA), 100 ± 10 ka for SU Lynn-Leo (Pre-SB type Lynn), 109 ± 10 ka for SUs Kim-Larry (SB), 105 ± 10 ka for SUs Kerry-Kate and 109 ± 10 ka for SU Jess (Early HP), 89 ± 8 ka for SU Jude (MSA type Jack), 77 ± 8 ka for SU John, 85 ± 9 ka for SU Fox, 83 ± 8 ka for SU Fred and 65 ± 8 ka for SU OB5 (Intermediate HP), 52 ± 5 ka for SUs OB2-4 (Late HP). This chronology, together with the technological analyses, greatly modifies the current chrono-cultural model regarding the SB and the HP and has important archaeological implications. Indeed, SB and HP no longer appear as short-lived techno-complexes with synchronous appearances for each and restricted to Oxygen Isotopic Stage (OIS) 4 across South Africa, as suggested by Jacobs et al. (2008, 2012). Rather, the sequence of Diepkloof supports a long chronology model with an early appearance of both SB and HP in the first half of OIS 5 and a long duration of the HP into OIS 3. These new dates imply that different technological traditions coexisted during OIS 5 and 4 in southern Africa and that SB and HP can no longer be considered as horizon markers.
Resumo:
During time-resolved optical stimulation experiments (TR-OSL), one uses short light pulses to separate the stimulation and emission of luminescence in time. Experimental TR-OSL results show that the luminescence lifetime in quartz of sedimentary origin is independent of annealing temperature below 500 °C, but decreases monotonically thereafter. These results have been interpreted previously empirically on the basis of the existence of two separate luminescence centers LH and LL in quartz, each with its own distinct luminescence lifetime. Additional experimental evidence also supports the presence of a non-luminescent hole reservoir R, which plays a critical role in the predose effect in this material. This paper extends a recently published analytical model for thermal quenching in quartz, to include the two luminescence centers LH and LL, as well as the hole reservoir R. The new extended model involves localized electronic transitions between energy states within the two luminescence centers, and is described by a system of differential equations based on the Mott–Seitz mechanism of thermal quenching. It is shown that by using simplifying physical assumptions, one can obtain analytical solutions for the intensity of the light during a TR-OSL experiment carried out with previously annealed samples. These analytical expressions are found to be in good agreement with the numerical solutions of the equations. The results from the model are shown to be in quantitative agreement with published experimental data for commercially available quartz samples. Specifically the model describes the variation of the luminescence lifetimes with (a) annealing temperatures between room temperature and 900 °C, and (b) with stimulation temperatures between 20 and 200 °C. This paper also reports new radioluminescence (RL) measurements carried out using the same commercially available quartz samples. Gaussian deconvolution of the RL emission spectra was carried out using a total of seven emission bands between 1.5 and 4.5 eV, and the behavior of these bands was examined as a function of the annealing temperature. An emission band at ∼3.44 eV (360 nm) was found to be strongly enhanced when the annealing temperature was increased to 500 °C, and this band underwent a significant reduction in intensity with further increase in temperature. Furthermore, a new emission band at ∼3.73 eV (330 nm) became apparent for annealing temperatures in the range 600–700 °C. These new experimental results are discussed within the context of the model presented in this paper.
Resumo:
Different types of membrane microdomains (rafts) have been postulated to be present in the rear and front of polarized migrating T-lymphocytes. Disruption of rafts by cholesterol sequestration prevents T-cell polarization and migration. Reggie/flotillin-1 and -2 are two highly homologous proteins that are thought to shape membrane microdomains. We have previously demonstrated the enrichment of flotillins in the uropod of human neutrophils. We have now investigated mechanisms involved in chemokine-induced flotillin reorganization in human T-lymphocytes, and possible roles of flotillins in lymphocyte polarization.