2 resultados para Optical character recognition

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Any image processing object detection algorithm somehow tries to integrate the object light (Recognition Step) and applies statistical criteria to distinguish objects of interest from other objects or from pure background (Decision Step). There are various possibilities how these two basic steps can be realized, as can be seen in the different proposed detection methods in the literature. An ideal detection algorithm should provide high recognition sensitiv ity with high decision accuracy and require a reasonable computation effort . In reality, a gain in sensitivity is usually only possible with a loss in decision accuracy and with a higher computational effort. So, automatic detection of faint streaks is still a challenge. This paper presents a detection algorithm using spatial filters simulating the geometrical form of possible streaks on a CCD image. This is realized by image convolution. The goal of this method is to generate a more or less perfect match between a streak and a filter by varying the length and orientation of the filters. The convolution answers are accepted or rejected according to an overall threshold given by the ackground statistics. This approach yields as a first result a huge amount of accepted answers due to filters partially covering streaks or remaining stars. To avoid this, a set of additional acceptance criteria has been included in the detection method. All criteria parameters are justified by background and streak statistics and they affect the detection sensitivity only marginally. Tests on images containing simulated streaks and on real images containing satellite streaks show a very promising sensitivity, reliability and running speed for this detection method. Since all method parameters are based on statistics, the true alarm, as well as the false alarm probability, are well controllable. Moreover, the proposed method does not pose any extraordinary demands on the computer hardware and on the image acquisition process.