21 resultados para Opaque minerals

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petrography, geochemical whole-rock composition, and chemical analyses of tourmaline were performed in order to determine the source areas of Lower Cretaceous Mora, El Castellar, and uppermost Camarillas Formation sandstones from the Iberian Chain, Spain. Sandstones were deposited in intraplate subbasins, which are bound by plutonic and volcanic rocks of Permian, Triassic, and Jurassic age, Paleozoic metamorphic rocks, and Triassic sedimentary rocks. Modal analyses together with petrographic and cathodoluminescence observations allowed us to define three quartz-feldspathic petrofacies and recognize diagenetic processes that modified the original framework composition. Results from average restored petrofacies are: Mora petrofacies = P/F >1 and Q(r)70 F(r)22 R(r)9; El Castellar petrofacies = P/F >1 and Q(r)57 F(r)25 R(r)18; and Camarillas petrofacies = P/F ∼ zero and Q(r)64 F(r)28 R(r)7 (P—plagioclase; F—feldspar; Q—quartz; R—rock fragments; r—restored composition). Trace-element and rare earth element abundances of whole-rock analyses discriminate well between the three petrofacies based on: (1) the Rb concentration, which is indicative of the K content and reflects the amount of K-feldspar modal abundance, and (2) the relative modal abundance of heavy minerals (tourmaline, zircon, titanite, and apatite), which is reproduced by the elements hosted in the observed heavy mineral assemblage (i.e., B and Li for tourmaline; Zr, Hf, and Ta for zircon; Ti, Ta, Nb, and their rare earth elements for titanite; and P, Y, and their rare earth elements for apatite). Tourmaline chemical composition for the three petrofacies ranges from Fe-tourmaline of granitic to Mg-tourmaline of metamorphic origin. The three defined petrofacies suggest a mixed provenance from plutonic and metamorphic source rocks. However, a progressively major influence of granitic source rocks was detected from the lowermost Mora petrofacies toward the uppermost Camarillas petrofacies. This provenance trend is consistent with the uplift and erosion of the Iberian Massif, which coincided with the development of the latest Berriasian synrift regional unconformity and affected all of the Iberian intraplate basins. The uplifting stage of Iberian Massif pluton caused a significant dilution of Paleozoic metamorphic source areas, which were dominant during the sedimentation of the lowermost Mora and El Castellar petrofacies. The association of petrographic data with whole-rock geochemical compositions and tourmaline chemical analysis has proved to be useful for determining source area characteristics, their predominance, and the evolution of source rock types during the deposition of quartz-feldspathic sandstones in intraplate basins. This approach ensures that provenance interpretation is consistent with the geological context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.