2 resultados para Online-driven profitability

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Driven by privacy-related fears, users of Online Social Networks may start to reduce their network activities. This trend can have a negative impact on network sustainability and its business value. Nevertheless, very little is understood about the privacy-related concerns of users and the impact of those concerns on identity performance. To close this gap, we take a systematic view of user privacy concerns on such platforms. Based on insights from focus groups and an empirical study with 210 subjects, we find that (i) Organizational Threats and (ii) Social Threats stemming from the user environment constitute two underlying dimensions of the construct “Privacy Concerns in Online Social Networks”. Using a Structural Equation Model, we examine the impact of the identified dimensions of concern on the Amount, Honesty, and Conscious Control of individual self-disclosure on these sites. We find that users tend to reduce the Amount of information disclosed as a response to their concerns regarding Organizational Threats. Additionally, users become more conscious about the information they reveal as a result of Social Threats. Network providers may want to develop specific mechanisms to alleviate identified user concerns and thereby ensure network sustainability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The era of big data opens up new opportunities in personalised medicine, preventive care, chronic disease management and in telemonitoring and managing of patients with implanted devices. The rich data accumulating within online services and internet companies provide a microscope to study human behaviour at scale, and to ask completely new questions about the interplay between behavioural patterns and health. In this paper, we shed light on a particular aspect of data-driven healthcare: autonomous decision-making. We first look at three examples where we can expect data-driven decisions to be taken autonomously by technology, with no or limited human intervention. We then discuss some of the technical and practical challenges that can be expected, and sketch the research agenda to address them.