31 resultados para Oman Ophiolite
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The Semail ophiolite in Oman is capped by up to 2 km of basaltic-andesitic lavas that host copper-dominant, Cyprus-type, volcanogenic massive sulfide (VMS) deposits. This study identifies multiple volcanostratigraphic horizons on which the deposits are situated, based on characterization of footwall and hanging-wall lavas from 16 deposits or deposit clusters. Comparison of field and petrographic features, compositions of igneous clinopyroxenes, and whole-rock geochemical signatures permits classification of the lavas within a modified version of the established regional volcanostratigraphy. Four extrusive units host deposits: Geotimes (earliest), Lasail, Alley, and Boninitic Alley (latest). The latter was previously known only at few localities, but this study reveals its regional extent and significance as a host for VMS deposits. The Geotimes and Lasail units represent Late Cretaceous, ocean spreading ridge and related off-axis volcanic environments, respectively. The Alley and Boninitic Alley units represent younger, subduction-related volcanism prior to Coniacian-Santonian obduction of the ophiolite. Our results show that VMS deposits occur on or near the Geotimes/Lasail and Geotimes/Alley contacts as well as entirely within the Geotimes, Lasail, Alley, and Boninitic Alley units. Highest Cu grades tend to occur in deposits lying on or within the Geotimes, whereas highest Au grades occur in deposits within the Boninitic Alley. In contrast to earlier studies, we conclude that essentially every horizon marking a hiatus in lava deposition in the Semail ophiolite, i.e., contacts between the four major eruptive units, and umbers and sedimentary chert layers within the units, has exploration potential for Cu-Au VMS deposits.
Resumo:
A regional hydrogeochemical model was developed to evaluate the geochemical evolution of different groundwaters in an alluvial aquifer system in the Interior of Oman. In combination with environmental isotopes the model is able to extract qualitative and quantitative information about recharge, groundwater flow paths and hydraulic connections between different aquifers. The main source of water to the alluvial aquifer along the flow paths ofWadi Abyadh andWadi M’uaydin in the piedmont is groundwater from the high-altitude areas of the Jabal Akhdar and local infiltration along the wadi channels. In contrast, the piedmont alluvial aquifer alongWadi Halfayn is primarily replenished by lateral recharge from the ophiolite foothills to the east besides smaller contributions from the Jabal Akhdar and local infiltration. Further down gradient in the Southern Alluvial Plain aquifer a significant source of recharge is direct infiltration of rain and surface runoff, originating from a moisture source that approaches Oman from the south. The model shows that the main geochemical evolution of the alluvial groundwaters occurs along the flow path from the piedmont to the Southern Alluvial Plain, where dedolomitization is responsible for the observed changes in the chemical and carbon isotope composition in these waters.