18 resultados para Oleoyl coenzyme A (OCoA)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Identification of dysplasia in inflammatory bowel disease represents a major challenge for both clinicians and pathologists. Clear diagnosis of dysplasia in inflammatory bowel disease is sometimes not possible with biopsies remaining "indefinite for dysplasia." Recent studies have identified molecular alterations in colitis-associated cancers, including increased protein levels of alpha-methylacyl coenzyme A racemase, p53, p16 and bcl-2. In order to analyze the potential diagnostic use of these parameters in biopsies from inflammatory bowel disease, a tissue microarray was manufactured from colons of 54 patients with inflammatory bowel disease composed of 622 samples with normal mucosa, 78 samples with inflammatory activity, 6 samples with low-grade dysplasia, 12 samples with high-grade dysplasia, and 66 samples with carcinoma. In addition, 69 colonoscopic biopsies from 36 patients with inflammatory bowel disease (28 low-grade dysplasia, 8 high-grade dysplasia, and 33 indefinite for dysplasia) were included in this study. Immunohistochemistry for alpha-methylacyl coenzyme A racemase, p53, p16 and bcl-2 was performed on both tissue microarray and biopsies. p53 and alpha-methylacyl coenzyme A racemase showed the most discriminating results, being positive in most cancers (77.3% and 80.3%) and dysplasias (94.4% and 94.4%) but only rarely in nonneoplastic epithelium (1.6% and 9.4%; P < .001). Through combining the best discriminators, p53 and alpha-methylacyl coenzyme A racemase, a stronger distinction between neoplastic tissues was possible. Of all neoplastic lesions, 75.8% showed a coexpression of alpha-methylacyl coenzyme A racemase and p53, whereas this was found in only 4 of 700 nonneoplastic samples (0.6%). alpha-methylacyl coenzyme A racemase/p53 coexpression was also found in 10 of 33 indefinite for dysplasia biopsies (30.3 %), suggesting a possible neoplastic transformation in these cases. Progression to dysplasia or carcinoma was observed in 3 of 10 p53/alpha-methylacyl coenzyme A racemase-positive, indefinite-for-dysplasia cases, including 1 of 7 cases without and 2 of 3 cases with p53 mutation. It is concluded that combined alpha-methylacyl coenzyme A racemase/p53 analysis may represent a helpful tool to confirm dysplasia in inflammatory bowel disease.
Resumo:
The diagnostic performance of isolated high-grade prostatic intraepithelial neoplasia in prostatic biopsies has recently been questioned, and molecular analysis of high-grade prostatic intraepithelial neoplasia has been proposed for improved prediction of prostate cancer. Here, we retrospectively studied the value of isolated high-grade prostatic intraepithelial neoplasia and the immunohistochemical markers ?-methylacyl coenzyme A racemase, Bcl-2, annexin II, and Ki-67 for better risk stratification of high-grade prostatic intraepithelial neoplasia in our local Swiss population. From an initial 165 diagnoses of isolated high-grade prostatic intraepithelial neoplasia, we refuted 61 (37%) after consensus expert review. We used 30 reviewed high-grade prostatic intraepithelial neoplasia cases with simultaneous biopsy prostate cancer as positive controls. Rebiopsies were performed in 66 patients with isolated high-grade prostatic intraepithelial neoplasia, and the median time interval between initial and repeat biopsy was 3 months. Twenty (30%) of the rebiopsies were positive for prostate cancer, and 10 (15%) showed persistent isolated high-grade prostatic intraepithelial neoplasia. Another 2 (3%) of the 66 patients were diagnosed with prostate cancer in a second rebiopsy. Mean prostate-specific antigen serum levels did not significantly differ between the 22 patients with prostate cancer and the 44 without prostate cancer in rebiopsies, and the 30 positive control patients, respectively (median values, 8.1, 7.7, and 8.8 ng/mL). None of the immunohistochemical markers, including ?-methylacyl coenzyme A racemase, Bcl-2, annexin II, and Ki-67, revealed a statistically significant association with the risk of prostate cancer in repeat biopsies. Taken together, the 33% risk of being diagnosed with prostate cancer after a diagnosis of high-grade prostatic intraepithelial neoplasia justifies rebiopsy, at least in our not systematically prostate-specific antigen-screened population. There is not enough evidence that immunohistochemical markers can reproducibly stratify the risk of prostate cancer after a diagnosis of isolated high-grade prostatic intraepithelial neoplasia.
Resumo:
The primary aim was to investigate the effect of combined butafosfan and cyanocobalamin on liver metabolism in early lactating cows through mRNA expression measurements of genes encoding 31 enzymes and transport proteins of major metabolic processes in the liver using 16 multiparous early lactating dairy cows. The treatments included i.v. injection of 10 mL/100 kg of body weight combined butafosfan and cyanocobalamin (TG, n = 8) on 3 d consecutively at 25 +/- 3 d in milk or injection with physiological saline solution similarly applied (CG, n = 8). Results include a higher daily milk production for TG cows (41.1 +/- 0.9 kg, mean +/- SEM) compared with CG cows (39.5 +/- 0.7 kg). In plasma, the concentration of inorganic phosphorus was lower in the TG cows (1.25 +/- 0.08 mmol/L) after the treatment than in the CG cows (1.33 +/- 0.07 mmol/L). The plasma beta-hydroxybutyrate concentration was 0.65 +/- 0.13 mmol/L for all cows before the treatment, and remained unaffected post treatment. The unique result was that in the liver, the mRNA abundance of acyl-coenzyme A synthetase long-chain family member 1, involved in fatty acid oxidation and biosynthesis, was lower across time points after the treatment for TG compared with CG cows (17.5 +/- 0.15 versus 18.1 +/- 0.24 cycle threshold, log(2), respectively). In conclusion, certain effects of combined butafosfan and cyanocobalamin were observed on mRNA abundance of a gene in the liver of nonketotic early lactating cows.
Resumo:
Dairy cows with high and low plasma non-esterified fatty acid (NEFA) concentrations in early lactation were compared for plasma parameters and mRNA expression of genes in liver and subcutaneous adipose tissue. The study involved 16 multiparous dairy cows with a plasma NEFA concentration of >500 mumol/l [n = 8, high NEFA (HNEFA)] and <140 mumol/l [n = 8, low NEFA (LNEFA)] in the first week post-partum (pp). Blood samples, adipose and liver tissues were collected on day 1 (+1d) and at week 3 pp (+3wk). Blood plasma was assayed for concentrations of metabolites and hormones. Subcutaneous adipose and liver tissues were analysed for mRNA abundance by real-time qRT-PCR encoding parameters related to lipid metabolism. Results showed that mean daily milk yield and milk fat quantity were higher in HNEFA than in LNEFA cows (p < 0.01), and the NEB was more negative in HNEFA than in LNEFA in +3wk too (p < 0.05). HNEFA cows had slightly lower (p < 0.1) insulin concentrations than LNEFA cows across the study period, and the body condition score decreased more from +1d to +3wk in HNEFA than in LNEFA (p = 0.09). The mRNA abundance of genes in the liver related to fatty acid oxidation (carnitine palmitoyltransferase 2 and very long chain acyl-coenzyme A dehydrogenase) and ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2) were lower in HNEFA than in LNEFA cows. No differences between the two groups were observed for mRNA expression of genes in adipose tissue. The number of calculated significant correlation coefficients (moderately strong) between parameters in the liver and in adipose tissue was nearly similar on +1d, and higher for HNEFA compared with LNEFA cows in +3wk. In conclusion, dairy cows with high compared with low plasma NEFA concentrations in early lactation show differentially synchronized mRNA expression of genes in adipose tissue and liver in +3wk that suggests a different orchestrated homeorhetic regulation of lipid metabolism.
Resumo:
The histidine triad nucleotide-binding (Hint2) protein is a mitochondrial adenosine phosphoramidase expressed in liver and pancreas. Its physiological function is unknown. To elucidate the role of Hint2 in liver physiology, the Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J x 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycaemia, an increase in plasma interprandial insulin but a decrease in glucose stimulated insulin secretion and defective thermoregulation upon fasting. Leptin mRNA in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II to III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. HIF-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-CoA dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) vs. 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . Conlusions: Hint2 positively regulates mitochondrial lipid metabolism and respiration, and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins. (HEPATOLOGY 2012.).
Resumo:
Lorazepam (LOR) is a 3-hydroxy-1,4-benzodiazepine that is chiral and undergoes enantiomerization at room temperature. In humans, about 75% of the administered dose of LOR is excreted in the urine as its 30-glucuronide. CE-MS with negative ESI was used to confirm the presence of LOR-30-glucuronide in urines that stemmed from a healthy individual who ingested 1 or 2 mg LOR, whereas free LOR could be detected in extracts prepared from enzymatically hydrolyzed urines. As the 30-glucuronidation reaction occurs at the chiral center of the molecule, two diastereoisomers can theoretically be formed, molecules that can no longer interconvert. The stereoselective formation of LOR glucuronides in humans and in vitro was investigated. MEKC analysis of extracts of the nonhydrolyzed urines suggested the presence of the two different LOR glucuronides in the urine. The formation of the same two diastereoisomers was also observed in vitro employing incubations of LOR with human liver microsomes in the presence of uridine 5'-diphospho-glucuronic acid as coenzyme. The absence of other coenzymes excluded the formation of phase I or other phase II metabolites of LOR. Both results revealed a stereoselectivity, one diastereoisomer being formed in a higher amount than the other. After enzymatic hydrolysis using beta-glucuronidase, these peaks could not be detected any more. Instead, LOR was monitored. Analysis of the extracts prepared from enzymatically hydrolyzed urines by MEKC in the presence of 2-hydroxypropyl-beta-CD revealed the enantiomerization process of LOR (observation of two peaks of equal magnitude connected with a plateau zone). The data presented provide for the first time the evidence of the stereoselectivity of the LOR glucuronidation in humans.
Resumo:
Glycosylphosphatidylinositol (GPI) lipids of Trypanosoma brucei undergo lipid remodelling, whereby longer fatty acids on the glycerol are replaced by myristate (C14:0). A similar process occurs on GPI proteins of Saccharomyces cerevisiae where Per1p first deacylates, Gup1p subsequently reacylates the anchor lipid, thus replacing a shorter fatty acid by C26:0. Heterologous expression of the GUP1 homologue of T. brucei in gup1Delta yeast cells partially normalizes the gup1Delta phenotype and restores the transfer of labelled fatty acids from Coenzyme A to lyso-GPI proteins in a newly developed microsomal assay. In this assay, the Gup1p from T. brucei (tbGup1p) strongly prefers C14:0 and C12:0 over C16:0 and C18:0, whereas yeast Gup1p strongly prefers C16:0 and C18:0. This acyl specificity of tbGup1p closely matches the reported specificity of the reacylation of free lyso-GPI lipids in microsomes of T. brucei. Depletion of tbGup1p in trypanosomes by RNAi drastically reduces the rate of myristate incorporation into the sn-2 position of lyso-GPI lipids. Thus, tbGup1p is involved in the addition of myristate to sn-2 during GPI remodelling in T. brucei and can account for the fatty acid specificity of this process. tbGup1p can act on GPI proteins as well as on GPI lipids.
Resumo:
The statins, a group of inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, are reported to influence a variety of immune system activities through 3-hydroxy-3-methylglutaryl coenzyme A reductase-dependent and -independent mechanisms. How statin treatment regulates immune system function in vivo nonetheless remains to be fully defined. We analyzed the immunomodulatory effects of lovastatin in a Candida albicans-induced delayed-type hypersensitivity reaction in mice. In this model, lovastatin administration reduced the acute inflammatory response elicited by C. albicans challenge. This anti-inflammatory activity of lovastatin was associated with a shift from a Th1 to a Th2 immune response, as well as an increase in the percentage of regulatory T cells at the inflammation site and in the regional draining lymph node. The lovastatin-induced increase in regulatory T cells in the inflamed skin was dependent on expression of CCL1, a chemokine that is locally up-regulated by statin administration. The anti-inflammatory effect of lovastatin was abrogated in CCL1-deficient mice. These results suggest that local regulation of chemokine expression may be an important process in statin-induced modulation of the immune system.
Resumo:
The purpose of this study was to investigate variations in hepatic regulation of metabolism during the dry period, after parturition, and in early lactation in dairy cows. For this evaluation, cows were divided into 2 groups based on the plasma concentration of beta-hydroxybutyric acid (BHBA) in wk 4 postpartum (PP; group HB, BHBA >0.75 mmol/L; group LB, BHBA <0.75 mmol/L, respectively). Liver biopsies were obtained from 28 cows at drying off (mean 59 +/- 8 d antepartum), on d 1, and in wk 4 and 14 PP. Blood samples were collected every 2 wk during this entire period. Liver samples were analyzed for mRNA abundance of genes related to carbohydrate metabolism (pyruvate carboxylase, PC; phosphoenolpyruvate carboxykinase, PEPCK; citrate synthase, CS), fatty acid biosynthesis (ATP citrate lyase, ACLY) and oxidation (acyl-CoA synthetase long-chain, ACSL; carnitine palmitoyltransferase 1A, CPT 1A; carnitine palmitoyltransferase 2, CPT 2; acyl-coenzyme A dehydrogenase very long chain, ACADVL), cholesterol biosynthesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, HMGCS1), ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2, HMGCS2), and of genes encoding the transcription factors peroxisome proliferator-activated receptor alpha (PPARalpha), peroxisome proliferator-activated receptor gamma (PPARgamma), and sterol regulatory element binding factor 1 (SREBF1). Blood plasma was assayed for concentrations of glucose, BHBA, nonesterified fatty acids, cholesterol, triglycerides, insulin, insulin-like growth factor-I, and thyroid hormones. In both groups, plasma parameters followed a pattern usually observed in dairy cows. However, changes were moderate and the energy balance in cows turned positive in wk 7 PP for both groups. Additionally, the energy balance and milk yield were similar for both groups after parturition onwards. Significant group effects were found at drying off, when plasma concentrations of triglycerides were higher in LB than in HB, and in wk 4 PP, when plasma concentrations of glucose and IGF-I were lower in HB than in LB. Similarly, moderate changes in mRNA expression of hepatic genes between the different time points were observed, although HB cows showed more adaptive performance than LB cows based on changes in mRNA expression of PEPCKc, PEPCKm, CS, CPT 1A, CPT 2, and PPARalpha. Part of the variation measured in this study was explained by parity. Significant Spearman rank correlation coefficients between the variables were not similar at each time point and were not similar between the groups at each time point, suggesting that metabolic regulation differs between cows. In conclusion, metabolic regulation in dairy cows is a dynamic system, and differs obviously between cows at different metabolic stages related to parturition.
Resumo:
Elevation of ketone bodies in dairy cows frequently occurs in early lactation, usually concomitantly with a lack of energy and glucose. The objective of this study was to induce an elevated plasma β-hydroxybutyrate (BHBA) concentration over 48 h in mid-lactating dairy cows (i.e., during a period of positive energy balance and normal glucose plasma concentrations). Effects of BHBA infusion on feed intake, metabolism, and performance were investigated. Thirteen cows were randomly assigned to 1 of 2 infusion groups, including an intravenous infusion with Na-dl-β-OH-butyrate (1.7 mol/L) to achieve a plasma concentration of 1.5 to 2.0 mmol/L of BHBA (HyperB; n=5), or an infusion of 0.9% saline solution (control; n=8). Blood was sampled before and hourly during the 48 h of infusion. In the liver, mRNA transcripts related to gluconeogenesis (pyruvate carboxylase, glucose 6-phosphatase, mitochondrial phosphoenolpyruvate carboxykinase), phosphofructokinase, pyruvate dehydrogenase complex, and fatty acid synthesis (acetyl-coenzyme A carboxylase, fatty acid synthase) were measured by real-time PCR. Glyceraldehyde-3-phosphate dehydrogenase and ubiquitin were used as housekeeping genes. Changes (difference between before and after 48-h infusion) during the infusion period were evaluated by ANOVA with treatment as fixed effect, and area under the curve of variables was calculated on the second day of experiment. The plasma BHBA concentration in HyperB cows was 1.74 ± 0.02 mmol/L (mean ± SE) compared with 0.59 ± 0.02 mmol/L for control cows. The change in feed intake, milk yield, and energy corrected milk did not differ between the 2 experimental groups. Infusion of BHBA reduced the plasma glucose concentration (3.47 ± 0.11 mmol/L) in HyperB compared with control cows (4.11 ± 0.08 mmol/L). Plasma glucagon concentration in HyperB was lower than the control group. All other variables measured in plasma were not affected by treatment. In the liver, changes in mRNA abundance for the selected genes were similar between 2 groups. Results demonstrate that intravenous infusion of BHBA decreased plasma glucose concentration in dairy cows, but this decrease could not be explained by alterations in insulin concentrations or key enzymes related to gluconeogenesis. Declined glucose concentration is likely functionally related to decreased plasma glucagon concentration.
Resumo:
During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n=25) or a restriction group (RES; 70% of energy requirements; n=25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.
Resumo:
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency- (MADD-), also called glutaric aciduria type 2, associated leukodystrophy may be severe and progressive despite conventional treatment with protein- and fat-restricted diet, carnitine, riboflavin, and coenzyme Q10. Administration of ketone bodies was described as a promising adjunct, but has only been documented once. METHODS We describe a Portuguese boy of consanguineous parents who developed progressive muscle weakness at 2.5 y of age, followed by severe metabolic decompensation with hypoglycaemia and coma triggered by a viral infection. Magnetic resonance (MR) imaging showed diffuse leukodystrophy. MADD was diagnosed by biochemical and molecular analyses. Clinical deterioration continued despite conventional treatment. Enteral sodium D,L-3-hydroxybutyrate (NaHB) was progressively introduced and maintained at 600 mg/kg BW/d (≈3% caloric need). Follow up was 3 y and included regular clinical examinations, biochemical studies, and imaging. RESULTS During follow up, the initial GMFC-MLD (motor function classification system, 0 = normal, 6 = maximum impairment) level of 5-6 gradually improved to 1 after 5 mo. Social functioning and quality of life recovered remarkably. We found considerable improvement of MR imaging and spectroscopy during follow up, with a certain lag behind clinical recovery. There was some persistent residual developmental delay. CONCLUSION NaHB is a highly effective and safe treatment that needs further controlled studies.
Resumo:
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery.