2 resultados para Ocular Physiological Phenomena

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the ocular and cerebral blood flow during exposure to increasingly hypoxic conditions at high altitudes. There is evidence that an increase in cerebral blood flow resulting from altered autoregulation constitutes a risk factor for acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) by leading to capillary overperfusion and vasogenic cerebral edema. The retina represents the only part of the central nervous system where capillary blood flow is visible and can be measured by noninvasive means. In this study we aimed to gain insights into retinal and choroidal autoregulatory properties during hypoxia and to correlate circulatory changes to symptoms of AMS and clinical signs of HACE. This observational study was performed within the scope of a high-altitude medical research expedition to Mount Muztagh Ata (7,546 m). Twenty seven participants underwent general and ophthalmic examinations up to a maximal height of 6,800 m. Examinations included fundus photography and measurements of retinal and choroidal blood flow, as well as measurement of arterial oxygen saturation and hematocrit. The initial increase in retinal blood velocity was followed by a decrease despite further ascent, whereas choroidal flow increase occurred later, at even higher altitudes. The sum of all adaptational mechanisms resulted in a stable oxygen delivery to the retina and the choroid. Parameters reflecting the retinal circulation and optic disc swelling correlated well with the occurrence of AMS-related symptoms. We demonstrate that sojourns at high altitudes trigger distinct behavior of retinal and choroidal blood flow. Increase in retinal but not in choroidal blood flow correlated with the occurrence of AMS-related symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Video-oculography devices are now used to quantify the vestibulo-ocular reflex (VOR) at the bedside using the head impulse test (HIT). Little is known about the impact of disruptive phenomena (e.g. corrective saccades, nystagmus, fixation losses, eye-blink artifacts) on quantitative VOR assessment in acute vertigo. This study systematically characterized the frequency, nature, and impact of artifacts on HIT VOR measures. From a prospective study of 26 patients with acute vestibular syndrome (16 vestibular neuritis, 10 stroke), we classified findings using a structured coding manual. Of 1,358 individual HIT traces, 72% had abnormal disruptive saccades, 44% had at least one artifact, and 42% were uninterpretable. Physicians using quantitative recording devices to measure head impulse VOR responses for clinical diagnosis should be aware of the potential impact of disruptive eye movements and measurement artifacts.