2 resultados para OXIDASE I
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Dispersal and recruitment are central processes that shape the geographic and temporal distributions of populations of marine organisms. However, significant variability in factors such as reproductive output, larval transport, survival, and settlement success can alter the genetic identity of recruits from year to year. We designed a temporal and spatial sampling protocol to test for genetic heterogeneity among adults and recruits from multiple time points along a similar to 400 km stretch of the Oregon (USA) coastline. In total, 2824 adult and recruiting Balanus glandula were sampled between 2001 and 2008 from 9 sites spanning the Oregon coast. Consistent with previous studies, we observed high mitochondrial DNA diversity at the cytochrome oxidase I locus (884 unique haplotypes) and little to no spatial genetic population structure among the 9 sites (Phi(ST) = 0.00026, p = 0.170). However, subtle but significant temporal shifts in genetic composition were observed among year classes (Phi(ST) = 0.00071, p = 0.035), and spatial Phi(ST) varied from year to year. These temporal shifts in genetic structure were correlated with yearly differences in the strength of coastal upwelling (p = 0.002), with greater population structure observed in years with weaker upwelling. Higher levels of barnacle settlement were also observed in years with weaker upwelling (p < 0.001). These data suggest the hypothesis that low upwelling intensity maintains more local larvae close to shore, thereby shaping the genetic structure and settlement rate of recruitment year classes.
Resumo:
Since 3-hydroxyanthranilic acid (3HAA), an oxidation product of tryptophan metabolism, is a powerful radical scavenger [Christen, S., Peterhans, E., ; Stocker, R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 2506], its reaction with peroxyl radicals was investigated further. Exposure to aqueous peroxyl radicals generated at constant rate under air from the thermolabile radical initiator 2,2'-azobis[2-amid-inopropane] hydrochloride (AAPH) resulted in rapid consumption of 3HAA with initial accumulation of its cyclic dimer, cinnabarinic acid (CA). The initial rate of formation of the phenoxazinone CA accounted for approximately 75% of the initial rate of oxidation of 3HAA, taking into account that 2 mol of 3HAA are required to form 1 mol of CA. Consumption of 3HAA under anaerobic conditions (where alkyl radicals are produced from AAPH) was considerably slower and did not result in detectable formation of CA. Addition of superoxide dismutase enhanced autoxidation of 3HAA as well as the initial rates of peroxyl radical-induced oxidation of 3HAA and formation of CA by approximately 40-50%, whereas inclusion of xanthine/xanthine oxidase decreased the rate of oxidation of 3HAA by approximately 50% and inhibited formation of CA almost completely, suggesting that superoxide anion radical (O2.-) was formed and reacted with reaction intermediate(s) to curtail formation of CA. Formation of CA was also observed when 3HAA was added to performed compound I of horseradish peroxidase (HRPO) or catalytic amounts of either HRPO, myeloperoxidase, or bovine liver catalase together with glucose/glucose oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)