2 resultados para ORIENTATION RELAXATION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE To gain a deeper understanding of the influence of skeletal muscle fiber orientation on metabolite visibility, magnetization transfer from water, and water proton relaxation rates in (1) H MR spectra. METHODS Non-water-suppressed MR spectroscopy was performed in tibialis anterior muscle (TA) of 10 healthy adults, with the TA oriented either parallel or at the magic angle to the 3T field. Spectra were acquired with metabolite-cycled PRESS, and water inversion from 50 to 2510 ms before excitation. Water proton T2 relaxation was sampled with STEAM with echo times from 12 to 272 ms. RESULTS Apparent concentrations of total creatine (tCr), taurine, and trimethylammonium compounds were reduced by 29% to 67% when TA was parallel to B0 . Both tCr peak areas were strongly correlated to the methylene peak splitting. Magnetization transfer rates from water to tCr CH3 were not significantly different between orientations. Water T1 s were similar between orientations, but T2 s were statistically significantly shorter by 1 ms in the parallel orientation (P = 0.002). CONCLUSION Muscle metabolite visibilities in MR spectroscopy and water T2 times depend substantially on muscle fiber orientation relative to B0 . In contrast, magnetization transfer rates appear to depend on muscle composition, rather than fiber orientation. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The S0 → S1 vibronic spectrum and S1 state nonradiative relaxation of jet-cooled keto-amino 5-fluorocytosine (5FCyt) are investigated by two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm–1 resolution. The 000 rotational band contour is polarized in-plane, implying that the electronic transition is 1ππ*. The electronic transition dipole moment orientation and the changes of rotational constants agree closely with the SCS-CC2 calculated values for the 1ππ* (S1) transition of 5FCyt. The spectral region from 0 to 300 cm–1 is dominated by overtone and combination bands of the out-of-plane ν1′ (boat), ν2′ (butterfly), and ν3′ (HN–C6H twist) vibrations, implying that the pyrimidinone frame is distorted out-of-plane by the 1ππ* excitation, in agreement with SCS-CC2 calculations. The number of vibronic bands rises strongly around +350 cm–1; this is attributed to the 1ππ* state barrier to planarity that corresponds to the central maximum of the double-minimum out-of-plane vibrational potentials along the ν1′, ν2′, and ν3′ coordinates, which gives rise to a high density of vibronic excitations. At +1200 cm–1, rapid nonradiative relaxation (knr ≥ 1012 s–1) sets in, which we interpret as the height of the 1ππ* state barrier in front of the lowest S1/S0 conical intersection. This barrier in 5FCyt is 3 times higher than that in cytosine. The lifetimes of the ν′ = 0, 2ν1′, 2ν2′, 2ν1′ + 2ν2′, 4ν2′, and 2ν1′ + 4ν2′ levels are determined from Lorentzian widths fitted to the rotational band contours and are τ ≥ 75 ps for ν′ = 0, decreasing to τ ≥ 55 ps at the 2ν1′ + 4ν2′ level at +234 cm–1. These gas-phase lifetimes are twice those of S1 state cytosine and 10–100 times those of the other canonical nucleobases in the gas phase. On the other hand, the 5FCyt gas-phase lifetime is close to the 73 ps lifetime in room-temperature solvents. This lack of dependence on temperature and on the surrounding medium implies that the 5FCyt nonradiative relaxation from its S1 (1ππ*) state is essentially controlled by the same ∼1200 cm–1 barrier and conical intersection both in the gas phase and in solution.