10 resultados para OPTICAL MAGNETIC TWISTING CYTOMETRY

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three-dimensional oxalate-based {[Ru(bpy)3][Cu2xNi2(1-x)(ox)3]}n (0≤ x ≤ 1, ox = C2O42-, bpy = 2,2‘bipyridine) were synthesized. The structure was determined for x = 1 by X-ray diffraction on single crystal. The compound crystallizes in the cubic space group P4132. It shows a three-dimensional 10-gon 3-connected (10,3) anionic network where copper(II) has an unusual tris(bischelated) environment. X-ray powder diffraction patterns and their Rietveld refinement show that all the compounds along the series are isostructural and single-phased. According to X-ray absorption spectroscopy, copper(II) and nickel(II) have an octahedral environment, respectively elongated and trigonally distorted. As shown by natural circular dichroism, the optically active forms of {[Ru(bpy)3][CuxNi2(1-x)(ox)3]}n are obtained starting from resolved Δ- or Λ-[Ru(bpy)3]2+. The Curie−Weiss temperatures range between −55 (x = 1) and −150 K (x = 0). The antiferromagnetic exchange interaction thus decreases when the copper contents increases in agreement with the crystallographic structure of the compounds and the electronic structure of the metal ions. At low temperature, the compounds exhibit complex long-range ordered magnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vascular-stromal compartment of lymph nodes is important for lymph node function, and high endothelial venules (HEVs) play a critical role in controlling the entry of recirculating lymphocytes. In autoimmune and autoinflammatory diseases, lymph node swelling is often accompanied by apparent HEV expansion and, potentially, targeting HEV expansion could be used therapeutically to limit autoimmunity. In previous studies using mostly flow cytometry analysis, we defined three differentially regulated phases of lymph node vascular-stromal growth: initiation, expansion, and the re-establishment of vascular quiescence and stabilization. In this study, we use optical projection tomography to better understand the morphologic aspects of HEV growth upon immunization with ovalbumin/CFA (OVA/CFA). We find HEV elongation as well as modest arborization during the initiation phase, increased arborization during the expansion phase, and, finally, vessel narrowing during the re-establishment of vascular quiescence and stabilization. We also examine acutely enlarged autoinflammatory lymph nodes induced by regulatory T cell depletion and show that HEVs are expanded and morphologically similar to the expanded HEVs in OVA/CFA-stimulated lymph nodes. These results reinforce the idea of differentially regulated, distinct phases of vascular-stromal growth after immunization and suggest that insights gained from studying immunization-induced lymph node vascular growth may help to understand how the lymph node vascular-stromal compartment could be therapeutically targeted in autoimmune and autoinflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compound of stoichiometry Mn(II)3[Mn(III)(CN)6]2·zH2O (z = 12−16) (1) forms air-stable, transparent red crystals. Low-temperature single crystal optical spectroscopy and single crystal X-ray diffraction provide compelling evidence for N-bonded high-spin manganese(II), and C-bonded low-spin manganese(III) ions arranged in a disordered, face-centered cubic lattice analogous to that of Prussian Blue. X-ray and neutron diffraction show structured diffuse scattering indicative of partially correlated (rather than random) substitutions of [Mn(III)(CN)6] ions by (H2O)6 clusters. Magnetic susceptibility measurements and elastic neutron scattering experiments indicate a ferrimagnetic structure below the critical temperature Tc = 35.5 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general goal of this thesis is correlating observable properties of organic and metal-organic materials with their ground-state electron density distribution. In a long-term view, we expect to develop empirical or semi-empirical approaches to predict materials properties from the electron density of their building blocks, thus allowing to rationally engineering molecular materials from their constituent subunits, such as their functional groups. In particular, we have focused on linear optical properties of naturally occurring amino acids and their organic and metal-organic derivatives, and on magnetic properties of metal-organic frameworks. For analysing the optical properties and the magnetic behaviour of the molecular or sub-molecular building blocks in materials, we mostly used the more traditional QTAIM partitioning scheme of the molecular or crystalline electron densities, however, we have also investigated a new approach, namely, X-ray Constrained Extremely Localized Molecular Orbitals (XC-ELMO), that can be used in future to extracted the electron densities of crystal subunits. With the purpose of rationally engineering linear optical materials, we have calculated atomic and functional group polarizabilities of amino acid molecules, their hydrogen-bonded aggregates and their metal-organic frameworks. This has enabled the identification of the most efficient functional groups, able to build-up larger electric susceptibilities in crystals, as well as the quantification of the role played by intermolecular interactions and coordinative bonds on modifying the polarizability of the isolated building blocks. Furthermore, we analysed the dependence of the polarizabilities on the one-electron basis set and the many-electron Hamiltonian. This is useful for selecting the most efficient level of theory to estimate susceptibilities of molecular-based materials. With the purpose of rationally design molecular magnetic materials, we have investigated the electron density distributions and the magnetism of two copper(II) pyrazine nitrate metal-organic polymers. High-resolution X-ray diffraction and DFT calculations were used to characterize the magnetic exchange pathways and to establish relationships between the electron densities and the exchange-coupling constants. Moreover, molecular orbital and spin-density analyses were employed to understand the role of different magnetic exchange mechanisms in determining the bulk magnetic behaviour of these materials. As anticipated, we have finally investigated a modified version of the X-ray constrained wavefunction technique, XC-ELMOs, that is not only a useful tool for determination and analysis of experimental electron densities, but also enables one to derive transferable molecular orbitals strictly localized on atoms, bonds or functional groups. In future, we expect to use XC-ELMOs to predict materials properties of large systems, currently challenging to calculate from first-principles, such as macromolecules or polymers. Here, we point out advantages, needs and pitfalls of the technique. This work fulfils, at least partially, the prerequisites to understand materials properties of organic and metal-organic materials from the perspective of the electron density distribution of their building blocks. Empirical or semi-empirical evaluation of optical or magnetic properties from a preconceived assembling of building blocks could be extremely important for rationally design new materials, a field where accurate but expensive first-principles calculations are generally not used. This research could impact the community in the fields of crystal engineering, supramolecular chemistry and, of course, electron density analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.