17 resultados para OLD RATS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test a possible neuroprotective activity of 17β-estradiol in the neonatal rat brain exposed to hypoxic-ischemia (controlled hypoxia after unilateral carotid artery ligation).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The expressional profile of mitochondrial transcripts and of genes involved in the mitochondrial biogenesis pathway induced by ALCAR daily supplementation in soleus muscle of control and unloaded 3-month-old rats has been analyzed. It has been found that ALCAR treatment is able to upregulate the expression level of mitochondrial transcripts (COX I, ATP6, ND6, 16 S rRNA) in both control and unloaded animals. Interestingly, ALCAR feeding to unloaded rats resulted in the increase of transcript level for master factors involved in mitochondrial biogenesis (PGC-1alpha, NRF-1, TFAM). It also prevented the unloading-induced downregulation of mRNA levels for kinases able to transduce metabolic (AMPK) and neuronal stimuli (CaMKIIbeta) into mitochondrial biogenesis. No significant effect on the expressional level of such genes was found in control ALCAR-treated rats. In addition, ALCAR feeding was able to prevent the loss of mitochondrial protein content due to unloading condition. Correlation analysis revealed a strong coordination in the expression of genes involved in mitochondrial biogenesis only in ALCAR-treated suspended animals, supporting a differentiated effect of ALCAR treatment in relation to the loading state of the soleus muscle. In conclusions, we demonstrated the ability of ALCAR supplementation to promote only in soleus muscle of hindlimb suspended rats an orchestrated expression of genes involved in mitochondrial biogenesis, which might counteract the unloading-induced metabolic changes, preventing the loss of mitochondrial proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of acetyl-L-carnitine (ALCAR) supplementation to 3-month-old rats in normal-loading and unloading conditions has been here investigated by a combined morphological, biochemical and transcriptional approach to test whether ALCAR might cause a remodeling of the metabolic/contractile phenotype of soleus muscle. Morphological assessment demonstrated an increase of type I oxidative fiber content and cross-sectional area in ALCAR-treated animals both in normal-loading and in unloading conditions. ALCAR prevented loss of mitochondrial mass in unloaded animals whereas no ALCAR-dependent increase of mitochondrial mass occurred in normal-loaded muscle. Validated microarray analysis delineated an ALCAR-induced maintenance of a slow-oxidative expression program only in unloaded soleus muscle. Indeed, the muscle adjustment of the expression profile of factors underlying mitochondrial oxidative metabolism, protein turnover, fiber type differentiation and an adaptation of voltage-gated ion channel expression was distinguishable with respect to the loading status. This selectivity may suggest a key role of muscle loading status in the manifestation of ALCAR effects. The results extend to a broader level of biological informations the previous notion on ALCAR positive effect in rat soleus muscle during unloading and point to a role of ALCAR for the maintenance of its slow-oxidative fiber character.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacteriolytic antibiotics cause the release of bacterial components that augment the host inflammatory response, which in turn contributes to the pathophysiology of brain injury in bacterial meningitis. In the present study, antibiotic therapy with nonbacteriolytic daptomycin was compared with that of bacteriolytic ceftriaxone in experimental pneumococcal meningitis, and the treatments were evaluated for their effects on inflammation and brain injury. Eleven-day-old rats were injected intracisternally with 1.3 x 10(4) +/- 0.5 x 10(4) CFU of Streptococcus pneumoniae serotype 3 and randomized to therapy with ceftriaxone (100 mg/kg of body weight subcutaneously [s.c.]; n = 55) or daptomycin (50 mg/kg s.c.; n = 56) starting at 18 h after infection. The cerebrospinal fluid (CSF) was assessed for bacterial counts, matrix metalloproteinase-9 levels, and tumor necrosis factor alpha levels at different time intervals after infection. Cortical brain damage was evaluated at 40 h after infection. Daptomycin cleared the bacteria more efficiently from the CSF than ceftriaxone within 2 h after the initiation of therapy (log(10) 3.6 +/- 1.0 and log(10) 6.3 +/- 1.4 CFU/ml, respectively; P < 0.02); reduced the inflammatory host reaction, as assessed by the matrix metalloproteinase-9 concentration in CSF 40 h after infection (P < 0.005); and prevented the development of cortical injury (cortical injury present in 0/30 and 7/28 animals, respectively; P < 0.004). Compared to ceftriaxone, daptomycin cleared the bacteria from the CSF more rapidly and caused less CSF inflammation. This combined effect provides an explanation for the observation that daptomycin prevented the development of cortical brain injury in experimental pneumococcal meningitis. Further research is needed to investigate whether nonbacteriolytic antibiotic therapy with daptomycin represents an advantageous alternative over current bacteriolytic antibiotic therapies for the treatment of pneumococcal meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactive oxygen intermediates mediate brain injury in bacterial meningitis. Several antioxidant drugs are clinically available, including N-acetylcysteine (NAC), deferoxamine (DFO), and trylizad-mesylate (TLM). The present study evaluated whether these antioxidants are beneficial in a model of pneumococcal meningitis. Eleven-day-old rats were infected intracisternally with Streptococcus pneumoniae and randomized to intraperitoneal treatment every 8 h with NAC (200 mg/kg), DFO (100 mg/kg), TLM (10 mg/kg), or saline (250 microL). TLM-treated animals showed a significantly reduced mortality compared with controls (P<.03). Meningitis led to extensive cortical injury at 22+/-2.2 h after infection (median, 14. 6% of cortex; range, 0-61.1%). Injury was significantly (P<.01) reduced to 1.1% (range, 0-34.6%) by NAC, to 2.3% (range, 0-19.6%) by DFO, and to 0.2% (range, 0-36.9%) by TLM (the difference was not significant among the 3 groups). None of the drugs reduced hippocampal injury. Thus, several clinically used antioxidants reduced cortical injury in experimental pneumococcal meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osseointegration of titanium dental implants into the jaw bone, which is required for maintenance of the implant in the jaw, results in ankylosis. Dental implants are therefore very unlike natural teeth, which exhibit significant movement in response to mechanical forces. The ability to generate periodontal ligament (PDL) tissues onto dental implants would better mimic the functional characteristics of natural teeth, and would likely improve implant duration and function. OBJECTIVES: The objective of this study was to investigate the feasibility of bioengineering PDL tissues onto titanium implant surfaces. METHODS: Bilateral maxillary first and second molars of 8-week old rats were extracted and used to generate single cell suspensions of PDL tissues, which were expanded in culture. Immunohistochemistry and RT-PCR were used to identify putative PDL progenitor/stem cell populations and characterize stem cell properties, including self-renewal, multipotency and stem cell maker expression. Cultured rPDL cells were harvested at third passage, seeded onto Matrigel-coated titanium implants (1.75 mm x 1 mm), and placed into healed M1/M2 extraction sites. Non-cell seeded Matrigel-coated titanium implants served as negative controls. Implants were harvested after 8, 12, or 18 weeks. RESULTS: Cultured rPDL cells expressed the mesenchymal stem-cell marker STRO-1. Under defined culture conditions, PDL cells differentiated into adipogenic, neurogenic and osteogenic lineages. While control implants were largely surrounded by alveolar bone, experimental samples exhibited fibrous PDL-like tissues, and perhaps cementum, on the surface of experimental implants. CONCLUSIONS: PDL contains stem cells that can generate cementum/PDL-like tissue in vivo. Transplantation of these cells might hold promise as a therapeutic approach for the bioengineering of PDL tissues onto titanium implant. Further refinement of this method will likely result in improved dental implant strategies for use of autologous PDL tissue regeneration in humans. This research was supported by CIMIT, and NIH/NIDCR grant DE016132 (PCY), and TEACRS (YL).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One gram of onion added to the food of rats inhibits significantly (p < 0.05) bone resorption as assessed by the urinary excretion of tritium released from bone of 9-week-old rats prelabeled with tritiated tetracycline from weeks 1 to 6. To isolate and identify the bone resorption inhibiting compound from onion, onion powder was extracted and the extract fractionated by column chromatography and medium-pressure liquid chromatography. A single active peak was finally obtained by semipreparative high-performance liquid chromatography. The biological activity of the various fractions was tested in vitro on the activity of osteoclasts to form resorption pits on a mineralized substrate. Medium, containing the various fractions or the pure compound, was added to osteoclasts of new-born rats settled on ivory slices. After 24 h of incubation, the tartrate-resistant acid phosphatase positive multinucleated cells, that is, osteoclasts, were counted. Subsequently, the number of resorption pits was determined. Activity was calculated as the ratio of resorption pits/osteoclasts and was compared to a negative control, that is, medium containing 10% fetal bovine serum only and to calcitonin (10(-12) M) as a positive control. Finally, a single peak inhibited osteoclast activity significantly (p < 0.05). The structure of this compound was elucidated with high-performance liquid chromatography-electrospray ionization-mass spectrometry, time-of-flight electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. The single peak was identified as gamma-L-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide (GPCS). It has a molecular mass of 306 Da and inhibits dose-dependently the resorption activity of osteoclasts, the minimal effective dose being approximately 2 mM. As no other peak displayed inhibitory activity, it likely is responsible for the effect of onion on bone resorption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pulmonary airways are subdivided into conducting and gas-exchanging airways. An acinus is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Until now a dissector of five consecutive sections or airway casts were used to count acini. We developed a faster method to estimate the number of acini in young adult rats. Right middle lung lobes were critical point dried or paraffin embedded after heavy metal staining and imaged by X-ray micro-CT or synchrotron radiation-based X-rays tomographic microscopy. The entrances of the acini were counted in three-dimensional (3D) stacks of images by scrolling through them and using morphological criteria (airway wall thickness and appearance of alveoli). Segmentation stopper were placed at the acinar entrances for 3D visualizations of the conducting airways. We observed that acinar airways start at various generations and that one transitional bronchiole may serve more than one acinus. A mean of 5612 (±547) acini per lung and a mean airspace volume of 0.907 (±0.108) μL per acinus were estimated. In 60-day-old rats neither the number of acini nor the mean acinar volume did correlate with the body weight or the lung volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central nervous system aspergillosis is an often fatal complication of invasive Aspergillus infection. Relevant disease models are needed to study the pathophysiology of cerebral aspergillosis and to develop novel therapeutic approaches. This study presents a model of central nervous system aspergillosis that mimics important aspects of human disease. Eleven-day-old non-immunosuppressed male Wistar rats were infected by an intracisternal injection of 10 mul of a conidial suspension of Aspergillus fumigatus. An inoculum of 7.18 log(10) colony-forming units (CFU) consistently produced cerebral infection and resulted in death of all animals (n = 25) within 3-10 days. Median survival time was 3 days. Histomorphologically, all animals developed intracerebral abscesses (2-26 per brain) containing abundant fungal hyphae and neutrophils. Fungal culture of cortical homogenates yielded maximal growth on day 3 after infection (5.4 log(10) CFU/g, n = 15) that declined over time. Galactomannan concentrations in cortical homogenates, assessed as an index for hyphal burden, peaked on days 3-5. Fungal infection spread to peripheral organs in 83% of animals. Fungal burden in lung, liver, spleen and kidney was two orders of magnitude lower than in the brain. The successful establishment of a model of cerebral aspergillosis in a non-immunosuppressed host provides the opportunity to investigate mechanisms of disease and to develop novel treatment regimens for this commonly fatal infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synergism/antagonism between interleukin (IL)-1beta and parathyroid hormone (PTH) has been the subject of in vitro and in vivo work, but a possible direct action of the cytokine on PTH release has not been reported. We have investigated the effect of a continuous infusion of human recombinant IL-1beta (rIL-1beta) on circulating PTH during a 14-day period in 7-week-old female rats. This time interval was chosen in order to exclude initial hypercalcemia and to enable data collection under steady-state conditions. Five groups of 20 animals each had miniosmotic pumps (Alzet 2002, 200 microl) implanted subcutaneously and primed to release either distilled water (controls) or 100, 500, 1,000 and 2, 000 ng/24 h of rIL-1beta. Blood was drawn on days 1 and 14 for PTH, corticosterone and Ca2+ determinations. Adequate biological activity of the infused rIL-1beta was supported by elevated rectal temperature records and significant elevations of plasma corticosterone on day 14. The 100-ng dose had no effect but 500-2, 000 ng rIL-1beta/24 h significantly reduced plasma PTH in a dose-dependent manner down to 54% of basal value (20.4 +/- 1.1 vs. 15.3 +/- 1.4 pg/ml for 500 ng, p < 0.005; 20.5 +/- 1.3 vs 12.3 +/- 1.1 for 1,000 ng, p < 0.001, and 19.5 +/- 2.0 vs. 10.6 +/- 1.1 pg/ml for 2,000 ng, p < 0.0008). Despite these findings, no differences in blood Ca2+ could be detected between treated animals and controls. The following conclusions can be inferred from the foregoing: Systemic administration of rIL-1beta to rats induced a dose-dependent fall in circulating PTH without altering calcemia, calling into question the biological relevance of the former finding. Although the recorded PTH depression may indeed not have been severe enough to cause hypocalcemia, it can be hypothesized that osteoclast activation by rIL-1beta would enhance bone mineral release into the pool compensating for depressed PTH activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perinatal brain damage is associated not only with hypoxic-ischemic insults but also with intrauterine inflammation. A combination of antenatal inflammation and asphyxia increases the risk of cerebral palsy >70 times. The aim of the present study was to determine the effect of intracisternal (i.c.) administration of endotoxin [lipopolysaccharides (LPS)] on subsequent hypoxic-ischemic brain damage in neonatal rats. Seven-day-old Wistar rats were subjected to i.c. application of NaCl or LPS (5 microg/pup). One hour later, the left common carotid artery was exposed through a midline neck incision and ligated with 6-0 surgical silk. After another hour of recovery, the pups were subjected to a hypoxic gas mixture (8% oxygen/92% nitrogen) for 60 min. The animals were randomized to four experimental groups: 1) sham control group, left common carotid artery exposed but not ligated (n = 5); 2) LPS group, subjected to i.c. application of LPS (n = 7); 3) hypoxic-ischemic study group, i.c. injection of NaCl and exposure to hypoxia after ligation of the left carotid artery (n = 17); or 4) hypoxic-ischemic/LPS study group, i.c. injection of LPS and exposure to hypoxia after ligation of the left carotid artery (n = 19). Seven days later, neonatal brains were assessed for neuronal cell damage. In a second set of experiments, rat pups received an i.c. injection of LPS (5 microg/pup) and were evaluated for tumor necrosis factor-alpha expression by immunohistochemistry. Neuronal cell damage could not be observed in the sham control or in the LPS group. In the hypoxic-ischemic/LPS group, neuronal injury in the cerebral cortex was significantly higher than in animals that were subjected to hypoxia/ischemia after i.c. application of NaCl. Injecting LPS intracisternally caused a marked expression of tumor necrosis factor-alpha in the leptomeninges. Applying LPS intracisternally sensitizes the immature rat brain to a subsequent hypoxic-ischemic insult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.