26 resultados para OCIS codes: (140.3380) Laser materials
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND In experimental animal studies, pulsing the CO2 laser beam has been shown to reduce the thermal damage zone of excised oral mucosal tissue. However, there is still controversy over whether this is borne out under clinical conditions. OBJECTIVE To compare the outcome following excisional biopsies of fibrous hyperplasias using a pulsed (cf) versus a continuous wave (cw) CO2 laser mode regarding the thermal damage zone, duration of surgeries, intra- and postoperative complications, postoperative pain sensation, scarring and/or relapse during the initial 6 months. MATERIALS AND METHODS One hundred Swiss-resident patients with a fibrous hyperplasia in their buccal mucosa were randomly assigned to the cw mode (5 W) or the cf mode (140 Hz, 400 microseconds, 33 mJ, 4.62 W) group. All excisions were performed by one single oral surgeon. Postoperative pain (2 weeks) was recorded by visual analogue scale (VAS; ranging from 0 to 100). Intake of analgesics and postoperative complications were recorded in a standardized study form. The maximum width of the collateral thermal damage zone was measured (µm) in excision specimens by one pathologist. Intraoral photographs at 6-month follow-up examinations were evaluated regarding scarring (yes/no). RESULTS Median duration of the excision was 65 seconds in the cw and 81 seconds in the cf group (P = 0.13). Intraoperative bleeding occurred in 16.3% of the patients in the cw and 17.7% of the cf group. The median value of the thermal damage zone was 161(±228) μm in the cw and 152(± 105) μm in the cf group (P = 0.68). The reported postoperative complications included swelling in 19% and minor bleeding in 6% without significant differences between the two laser modes. When comparing each day separately or the combined mean VAS scores of both groups between Days 1-3, 1-7, and 1-15, there were no significant differences. However, more patients of the cw group (25%) took analgesics than patients of the cf group (9.8%) resulting in a borderline significance (P = 0.04). Scarring at the excision site was found in 50.6% of 77 patients after 6 months, and more scars were identified in cases treated with the cf mode (P = 0.03). CONCLUSIONS Excision of fibrous hyperplasias performed with a CO2 laser demonstrated a good clinical outcome and long-term predictability with a low risk of recurrence regardless of the laser mode (cf or cw) used. Scarring after 6 months was only seen in 50.6% of the cases and was slightly more frequent in the cf mode group. Based on the findings of the present study, a safety border of 1 mm appears sufficient for both laser modes especially when performing a biopsy of a suspicious soft tissue lesion to ensure a proper histopathological examination.
Resumo:
The aim of this study was to determine the influence of thickness and aging on the intrinsic fluorescence of sealing materials and their ability to block fluorescence from the underlying surface as assessed using a laser fluorescence device. Cavities of 0.5 mm and 1 mm depth were drilled into acrylic boards which were placed over two surfaces with different fluorescence properties: a low-fluorescence surface, to assess the intrinsic fluorescence of the sealing materials, and a high-fluorescence surface, to assess the fluorescence-blocking ability of the sealing materials. Ten cavities of each depth were filled with different sealing materials: Adper Scotchbond Multi-Purpose, Adper Single Bond 2, FluroShield, Conseal f and UltraSeal XT Plus. Fluorescence was measured with a DIAGNOdent pen at five different time points: empty cavity, after polymerization, and 1 day, 1 week and 1 month after filling. The individual values after polymerization, as well as the area under the curve for the different periods were submitted to ANOVA and the Tukey test (p < 0.05). At 0.5 mm, Scotchbond, FluroShield and UltraSeal showed insignificant changes in intrinsic fluorescence with aging and lower fluorescence after polymerization than Single Bond and Conseal. At 1 mm, Scotchbond and FluroShield showed the lowest intrinsic fluorescence, but only Scotchbond showed no chagnes in fluorescence with aging. At both depths, Scotchbond blocked significantly less fluorescence. All sealing materials blocked more fluorescence when applied to a depth of 1 mm. At 0.5 mm, fissure sealants blocked more fluorescence than adhesives, and did not show significant changes with aging. Scotchbond had the least affect on the fluorescence from the underlying surface and would probably have the least affect on the monitoring of sealed dental caries by laser fluorescence.
Resumo:
A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.
Resumo:
PURPOSE: To evaluate the pulp sensitivity and vitality of mandibular incisors and canines before and after bone harvesting in the symphysis. MATERIALS AND METHODS: In 20 patients requiring bone grafts from the symphysis, pulp sensitivity (carbon dioxide [CO2]) and pulpal blood flow (laser Doppler flowmetry [LDF]) of mandibular incisors and canines were evaluated preoperatively, postoperatively, and 6 months after surgery. Teeth were allocated to 1 of 3 groups according to their initial and final reaction to CO2 (group A = teeth with a positive reaction throughout the study, group B = teeth that exhibited a sensitivity change from positive to negative, and group C = teeth with a negative reaction throughout the study). RESULTS: Preoperative flux measurements (LDF) did not differ between groups A, B, and C. Teeth with sensitivity changes (group B) showed the greatest decrease (a statistically significant decrease) of pulpal blood flow over time, whereas teeth in groups A and C demonstrated an insignificant reduction of flux over time. DISCUSSION AND CONCLUSIONS: LDF was purely used as an experimental tool in the present study. Pulpal blood flow measurements using LDF demonstrated a decrease of flux over time in anterior mandibular teeth following bone harvesting in the symphysis. A significant change of flux, however, was only observed for teeth that also demonstrated a loss of pulp sensitivity during the same study period. Loss of pulp sensitivity appeared to be correlated to a significant decrease of blood flow assessed by LDF.
Resumo:
PURPOSE: To evaluate the effect of CO2 laser treatment through topically applied amine fluoride solution on demineralised enamel. MATERIALS AND METHODS: Sixty extracted human molar crowns were selected and cut longitudinally into half. One half was subjected to a 10-day pH-cycling procedure to create caries-like lesions, whereas the other was left non-demineralised. The following treatments were randomly assigned (one treatment per tooth, on respective non-demineralised and demineralised matched specimens): exposure to a 1% amine fluoride solution for 15 s without irradiation (group I), irradiation for 15 s with a continuous-wave CO2 laser (group II), or laser-treatment for 15 s through the amine fluoride solution applied immediately beforehand (group III). Fluoride uptake (n = 30) and acid resistance (n = 30) were determined after treatment. Enamel surface alterations after laser irradiation were monitored using scanning electron microscopy. RESULTS: In groups I and III, an increased fluoride uptake was detected (p < or = 0.05). Laser irradiation through topical fluoride resulted in an increased acid resistance of sound and demineralised enamel specimens in deeper layers (p < or = 0.05). In addition, less surface alterations were observed in SEM examination of specimens irradiated through the amine fluoride solution compared with counterparts treated with laser only. CONCLUSIONS: CO2 laser light application through an amine fluoride solution may be instrumental in enhancing acid resistance of sound and demineralised enamel.
Resumo:
BACKGROUND AND OBJECTIVES: In this in vitro feasibility study we analyzed tissue fusion using bovine serum albumin (BSA) and Indocyanine green (ICG) doped polycaprolactone (PCL) scaffolds in combination with a diode laser as energy source while focusing on the influence of irradiation power and albumin concentration on the resulting tensile strength and induced tissue damage. MATERIALS AND METHODS: A porous PCL scaffold doped with either 25% or 40% (w/w) of BSA in combination with 0.1% (w/w) ICG was used to fuse rabbit aortas. Soldering energy was delivered through the vessel from the endoluminal side using a continuous wave diode laser at 808 nm via a 400 microm core fiber. Scaffold surface temperatures were analyzed with an infrared camera. Optimum parameters such as irradiation time, radiation power and temperature were determined in view of maximum tensile strength but simultaneously minimum thermally induced tissue damage. Differential scanning calorimetry (DSC) was performed to measure the influence of PCL on the denaturation temperature of BSA. RESULTS: Optimum parameter settings were found to be 60 seconds irradiation time and 1.5 W irradiation power resulting in tensile strengths of around 2,000 mN. Corresponding scaffold surface temperature was 117.4+/- 12 degrees C. Comparison of the two BSA concentration revealed that 40% BSA scaffold resulted in significant higher tensile strength compared to the 25%. At optimum parameter settings, thermal damage was restricted to the adventitia and its interface with the outermost layer of the tunica media. The DSC showed two endothermic peaks in BSA containing samples, both strongly depending on the water content and the presence of PCL and/or ICG. CONCLUSIONS: Diode laser soldering of vascular tissue using BSA-ICG-PCL-scaffolds leads to strong and reproducible tissue bonds, with vessel damage limited to the adventitia. Higher BSA content results in higher tensile strengths. The DSC-measurements showed that BSA denaturation temperature is lowered by addition of water and/or ICG-PCL.
Resumo:
OBJECTIVE: The aim of this study was to determine the influence of polyvinyl chloride (PVC) wrapping on the performance of two laser fluorescence devices (LF and LFpen) by assessing tooth occlusal surfaces. BACKGROUND DATA: Protection of their tips may influence LF measurements. To date there are no studies evaluating the influence of this protection on the performance of the LFpen on permanent teeth, or comparing it to the original LF device. MATERIALS AND METHODS: One hundred nineteen permanent molars were assessed by two experienced dentists using the LF and the LFpen devices, both with and without PVC wrapping. The teeth were histologically prepared and assessed for caries extension. RESULTS: The LF values with and without PVC wrapping were significantly different. For both LF devices, the sensitivity and accuracy were lower when the PVC wrapping was used. The specificity was statistically significantly higher for the LFpen with PVC. No difference was found between the areas under the ROC curves with and without PVC wrapping. The ICC showed excellent interexaminer agreement. The Bland and Altman method showed a range between the upper and the lower limits of agreement of 63.4 and 57.8 units for the LF device, and 49.4 and 74.2 for the LFpen device, with and without PVC wrapping, respectively. CONCLUSIONS: We found an influence of the PVC wrapping on the performance of the LF and LFpen devices. However, since its influence on detection of occlusal caries lesions is considered for, the use of one PVC layer is suggested to avoid cross-contamination in clinical practice.
Resumo:
Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (< 1 GW/cm2) is used to achieve stable ion formation and low sample consumption. In comparison to our previous laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility. Copyright © 2012 John Wiley & Sons, Ltd.