17 resultados para O-DEMETHYLATION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantioselective CE with sulfated cyclodextrins as chiral selectors was used to determine the CYP3A4-catalyzed N-demethylation kinetics of ketamine to norketamine and its inhibition in the presence of ketoconazole in vitro. Ketamine, a chiral phencyclidine derivative, was incubated with recombinant human CYP3A4 from a baculovirus expression system as racemic mixture and as single enantiomer. Alkaline liquid/liquid extracts of the samples were analyzed with a pH 2.5 buffer comprising 50 mM Tris and phosphoric acid together with either multiple isomer sulfated β-cyclodextrin (10 mg/mL) or highly sulfated γ-cyclodextrin (2%, w/v). Data obtained in the absence of ketoconazole revealed that the N-demethylation occurred stereoselectively with Michaelis-Menten (incubation of racemic ketamine) and Hill (separate incubation of single enantiomers) kinetics. Data generated in the presence of ketoconazole as the inhibitor could best be fitted to a one-site competitive model and inhibition constants were calculated using the equation of Cheng and Prusoff. No stereoselective difference was observed, but inhibition constants for the incubation of racemic ketamine were found to be larger compared with those obtained with the incubation of single ketamine enantiomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin is a chemical inducer of Parkinson's disease (PD) whereas N-methylated beta-carbolines and isoquinolines are naturally occurring analogues of MPTP involved in PD. This research has studied the oxidation of MPTP by human CYP2D6 (CYP2D6*1 and CYP2D6*10 allelic variants) as well as by a mixture of cytochrome P450s-resembling HLM, and the products generated compared with those afforded by human monoamine oxidase (MAO-B). MPTP was efficiently oxidized by CYP2D6 to two main products: MPTP-OH (p-hydroxylation) and PTP (N-demethylation), with turnover numbers of 10.09 min-1 and Km of 79.36+/-3 microM (formation of MPTP-OH) and 18.95 min-1 and Km 69.6+/-2.2 microM (PTP). Small amounts of dehydrogenated toxins MPDP+ and MPP+ were also detected. CYP2D6 competed with MAO-B for the oxidation of MPTP. MPTP oxidation by MAO-B to MPDP+ and MPP+ toxins (bioactivation) was up to 3-fold higher than CYP2D6 detoxification to PTP and MPTP-OH. Several N-methylated beta-carbolines and isoquinolines were screened for N-demethylation (detoxification) that was not significantly catalyzed by CYP2D6 or the P450s mixture. In contrast, various beta-carbolines were efficiently hydroxylated to hydroxy-beta-carbolines by CYP2D6. Thus, N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline (a close MPTP analog) was highly hydroxylated to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline and a corresponding 7-hydroxy-derivative. Thus, CYP2D6 could participate in the bioactivation and/or detoxification of these neuroactive compounds by an active hydroxylation pathway. The CYP2D6*1 enzymatic variant exhibited much higher metabolism of both MPTP and N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline than the CYP2D6*10 variant, highlighting the importance of CYP2D6 polymorphism in the oxidation of these toxins. Altogether, these results suggest that CYP2D6 can play an important role in the metabolic outcome of both MPTP and beta-carbolines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Execution of an enzymatic reaction performed in a capillary with subsequent electrophoretic analysis of the formed products is referred to as electrophoretically mediated microanalysis (EMMA). An EMMA method was developed to investigate the stereoselectivity of the CYP3A4-mediated N-demethylation of ketamine. Ketamine was incubated in a 50 μm id bare fused-silica capillary together with human CYP3A4 Supersomes using a 100 mM phosphate buffer (pH 7.4) at 37°C. A plug containing racemic ketamine and the NADPH regenerating system including all required cofactors for the enzymatic reaction was injected, followed by a plug of the metabolizing enzyme CYP3A4 (500 nM). These two plugs were bracketed by plugs of incubation buffer to ensure proper conditions for the enzymatic reaction. The rest of the capillary was filled with a pH 2.5 running buffer comprising 50 mM Tris, phosphoric acid, and 2% w/v of highly sulfated γ-cyclodextrin. Mixing of reaction plugs was enhanced via application of -10 kV for 10 s. After an incubation of 8 min at 37°C without power application (zero-potential amplification), the capillary was cooled to 25°C within 3 min followed by application of -10 kV for the separation and detection of the formed enantiomers of norketamine. Norketamine formation rates were fitted to the Michaelis-Menten model and the elucidated values for V(max) and K(m) were found to be comparable to those obtained from the off-line assay of a previous study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 (CYP) enzymes catalyze the metabolism of both, the analgesic and anesthetic drug ketamine and the α2 -adrenergic receptor-agonist medetomidine that is used for sedation and analgesia. As racemic medetomidine or its active enantiomer dexmedetomidine are often coadministered with racemic or S-ketamine in animals and dexmedetomidine together with S- or racemic ketamine in humans, drug-drug interactions are likely to occur and have to be characterized. Enantioselective CE with highly sulfated γ-cyclodextrin as chiral selector was employed for analyzing in vitro (i) the kinetics of the N-demethylation of ketamine mediated by canine CYP3A12 and (ii) interactions occurring with racemic medetomidine and dexmedetomidine during coincubation with ketamine and canine liver microsomes (CLM), canine CYP3A12, human liver microsomes (HLM), and human CYP3A4. For CYP3A12 without an inhibitor, Michaelis-Menten kinetics was determined for the single enantiomers of ketamine and substrate inhibition kinetics for racemic ketamine. Racemic medetomidine and dexmedetomidine showed an inhibition of the N-demethylation reaction in the studied canine enzyme systems. Racemic medetomidine is the stronger inhibitor for CLM, whereas there is no difference for CYP3A12. For CLM and CYP3A12, the inhibition of dexmedetomidine is stronger for the R- compared to the S-enantiomer of ketamine, a stereoselectivity that is not observed for CYP3A4. Induction is observed at a low dexmedetomidine concentration with CYP3A4 but not with CYP3A12, CLM, and HLM. Based on these results, S-ketamine combined with dexmedetomidine should be the best option for canines. The enantioselective CE assay with highly sulfated γ-cyclodextrin as chiral selector is an effective tool for determining kinetic and inhibition parameters of metabolic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ketamine, a phencyclidine derivative, is used for induction of anesthesia, as an anesthetic drug for short term surgical interventions and in subanesthetic doses for postoperative pain relief. Ketamine undergoes extensive hepatic first-pass metabolism. Enantioselective capillary electrophoresis with multiple isomer sulfated -cyclodextrin as chiral selector was used to identify cytochrome P450 enzymes involved in hepatic ketamine and norketamine biotransformation in vitro. The N-demethylation of ketamine to norketamine and subsequently the biotransformation of norketamine to other metabolites were studied via analysis of alkaline extracts of in vitro incubations of racemic ketamine and racemic norketamine with nine recombinantly expressed human cytochrome P450 enzymes and human liver microsomes. Norketamine was formed by CYP3A4, CYP2C19, CYP2B6, CYP2A6, CYP2D6 and CYP2C9, whereas CYP2B6 and CYP2A6 were identified to be the only enzymes which enable the hydroxylation of norketamine. The latter two enzymes produced metabolic patterns similar to those found in incubations with human liver microsomes. The kinetic data of ketamine N-demethylation with CYP3A4 and CYP2B6 were best described with the Michaelis-Menten model and the Hill equation, respectively. This is the first study elucidating the individual enzymes responsible for hydroxylation of norketamine. The obtained data suggest that in vitro biotransformation of ketamine and norketamine is stereoselective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ketamine, an injectable anesthetic and analgesic consisting of a racemic mixture of S-and R-ketamine, is routinely used in veterinary and human medicine. Nevertheless, metabolism and pharmacokinetics of ketamine have not been characterized sufficiently in most animal species. An enantioselective CE assay for ketamine and its metabolites in microsomal preparations is described. Racemic ketamine was incubated with pooled microsomes from humans, horses and dogs over a 3 h time interval with frequent sample collection. CE data revealed that ketamine is metabolized enantioselectively to norketamine (NK), dehydronorketamine and three hydroxylated NK metabolites in all three species. The metabolic patterns formed differ in production rates of the metabolites and in stereoselectivity of the hydroxylated NK metabolites. In vitro pharmacokinetics of ketamine N-demethylation were established by incubating ten different concentrations of racemic ketamine and the single enantiomers of ketamine for 8 min and data modeling was based on Michaelis-Menten kinetics. These data revealed a reduced intrinsic clearance of the S-enantiomer in the racemic mixture compared with the single S-enantiomer in human microsomes, no difference in equine microsomes and the opposite effect in canine microsomes. The findings indicate species differences with possible relevance for the use of single S-ketamine versus racemic ketamine in the clinic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effectively assessing subtle hepatic metabolic functions by novel non-invasive tests might be of clinical utility in scoring NAFLD (non-alcoholic fatty liver disease) and in identifying altered metabolic pathways. The present study was conducted on 39 (20 lean and 19 obese) hypertransaminasemic patients with histologically proven NAFLD {ranging from simple steatosis to severe steatohepatitis [NASH (non-alcoholic steatohepatitis)] and fibrosis} and 28 (20 lean and eight overweight) healthy controls, who underwent stable isotope breath testing ([(13)C]methacetin and [(13)C]ketoisocaproate) for microsomal and mitochondrial liver function in relation to histology, serum hyaluronate, as a marker of liver fibrosis, and body size. Compared with healthy subjects and patients with simple steatosis, NASH patients had enhanced methacetin demethylation (P=0.001), but decreased (P=0.001) and delayed (P=0.006) ketoisocaproate decarboxylation, which was inversely related (P=0.001) to the degree of histological fibrosis (r=-0.701), serum hyaluronate (r=-0.644) and body size (r=-0.485). Ketoisocaproate decarboxylation was impaired further in obese patients with NASH, but not in patients with simple steatosis and in overweight controls. NASH and insulin resistance were independently associated with an abnormal ketoisocaproate breath test (P=0.001). The cut-off value of 9.6% cumulative expired (13)CO(2) for ketoisocaproate at 60 min was associated with the highest prediction (positive predictive value, 0.90; negative predictive value, 0.73) for NASH, yielding an overall sensitivity of 68% and specificity of 94%. In conclusion, both microsomal and mitochondrial functions are disturbed in NASH. Therefore stable isotope breath tests may usefully contribute to a better and non-invasive characterization of patients with NAFLD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CE-ESI multistage IT-MS (CE-MS(n), n < or = 4) and computer simulation of fragmentation are demonstrated to be effective tools to detect and identify phase I and phase II metabolites of hydromorphone (HMOR) in human urine. Using the same CE conditions as previously developed for the analysis of urinary oxycodone and its metabolites, HMOR and its phase I metabolites produced by N-demethylation, 6-keto-reduction and N-oxidation and phase II conjugates of HMOR and its metabolites formed with glucuronic acid, glucose, and sulfuric acid could be detected in urine samples of a patient that were collected during a pharmacotherapy episode with daily ingestion of 48 mg of HMOR chloride. The CE-MS(n) data obtained with the HMOR standard, synthesized hydromorphol and hydromorphone-N-oxide, and CYP3A4 in vitro produced norhydromorphone were employed to identify the metabolites. This approach led to the identification of previously unknown HMOR metabolites, including HMOR-3O-glucide and various N-oxides, structures for which no standard compounds or mass spectra library data were available. Furthermore, the separation of alpha- and beta-hydromorphol, the stereoisomers of 6-keto-reduced HMOR, was achieved by CE in the presence of the single isomer heptakis(2,3-diacetyl-6-sulfato)-beta-CD. The obtained data indicate that the urinary excretion of alpha-hydromorphol is larger than that of beta-hydromorphol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphic CYP2D6 is the enzyme that activates the opioid analgesic tramadol by O-demethylation to M1. Our objective was to determine the opioid effects measured by pupillary response to tramadol of CYP2D6 genotyped volunteers in relation to the disposition of tramadol and M1 in plasma. Tramadol displayed phenotypic pharmacokinetics and it was possible to identify PM subjects with >99% confidence from the metabolic ratio (MR) in a single blood sample taken between 2.5 and 24 h post-dose. Homozygous extensive metabolizers (EM) differed from poor metabolizers (PM), with an almost three-fold greater (P=0.0014) mean maximal pupillary constriction (Emax). Significant correlations between the AUC and Cmax values of M1 versus pupillary constriction were found. The corresponding correlations of pharmacokinetic parameters for tramadol itself were weaker and negative. The strongest correlations were for the single-point metabolic ratios at all sampling intervals versus the effects, with rs ranging from 0.85 to 0.89 (p0.01). It is concluded that the concept of dual opioid/non-opioid action of the drug, though considerably stronger in EMs, is valid for both EM and PM subjects. This is the theoretical basis for the frequent use and satisfactory efficacy of tramadol in clinical practice when given to genetically non-selected population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A robust CE method for the simultaneous determination of the enantiomers of ketamine and norketamine in equine plasma is described. It is based upon liquid-liquid extraction of ketamine and norketamine at alkaline pH from 1 mL plasma followed by analysis of the reconstituted extract by CE in the presence of a pH 2.5 Tris-phosphate buffer containing 10 mg/mL highly sulfated beta-CD as chiral selector. Enantiomer plasma levels between 0.04 and 2.5 microg/mL are shown to provide linear calibration graphs. Intraday and interday precisions evaluated from peak area ratios (n = 5) at the lowest calibrator concentration are < 8 and < 14%, respectively. The LOD for all enantiomers is 0.01 microg/mL. After i.v. bolus administration of 2.2 mg/kg racemic ketamine, the assay is demonstrated to provide reliable data for plasma samples of ponies under isoflurane anesthesia, of ponies premedicated with xylazine, and of one horse that received romifidine, L-methadone, guaifenisine, and isoflurane. In animals not premedicated with xylazine, the ketamine N-demethylation is demonstrated to be enantioselective. The concentrations of the two ketamine enantiomers in plasma are equal whereas S-norketamine is found in a larger amount than R-norketamine. In the group receiving xylazine, data obtained do not reveal this stereoselectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the opioid antagonists naloxone-3-glucuronide and N-methylnaloxone on rat colon motility after morphine stimulation was measured. The rat model consisted of the isolated, vascularly perfused colon. The antagonists (10(-4) M, intraluminally) and morphine (10(-4) M, intra-arterially) were administered from 20 to 30 and from 10 to 50 min, respectively. Colon motility was determined by the luminal outflow. The antagonist concentrations in the luminal and venous outflow were measured by high-performance liquid chromatography. Naloxone-3-glucuronide and N-methylnaloxone reversed the morphine-induced reduction of the luminal outflow to baseline within 10 and 20 min, respectively. These antagonists were then excreted in the luminal outflow and could not be found in the venous samples. Naloxone, produced by hydrolysis or demethylation, was not detectable. In conclusion, highly polar naloxone derivatives peripherally antagonize the motility-lowering effect of morphine in the perfused isolated rat colon, are stable, and are not able to cross the colon-mucosal blood barrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CE with multiple isomer sulfated-CD as selector was used for the simultaneous analysis of the stereoisomers of ketamine, norketamine, 5,6-dehydronorketamine and hydroxylated metabolites of norketamine in liquid/liquid extracts of (i) in vitro incubations with ketamine or norketamine and equine liver microsomes and (ii) plasma and urine of ponies receiving a target-controlled infusion of ketamine under isoflurane anesthesia. Hydroxynorketamine metabolites with the hydroxy group at the cyclohexanone ring could be shown to be formed stereoselectively both in vitro and in vivo. Due to the lack of standard compounds, urinary extracts were fractionated by HPLC followed by characterization of the collected fractions with CE and LC-MS(n) with 0.7 mmu mass discrimination. Comparison of LC-MS(n) data obtained with the fractions, an in vitro microsomal sample, and both pony urine and hydrolyzed pony urine led to the identification of four hydroxylated norketamine metabolites with hydroxylation at the cyclohexanone ring, two with hydroxylation at the aromatic ring and four hydroxylated metabolites of ketamine. Due to the lower detection sensitivity, only the four hydroxynorketamine metabolites with hydroxylation at the cyclohexanone ring were observed by CE. The data suggest that demethylation of ketamine followed by hydroxylation of norketamine at the cyclohexanone ring is the major metabolic pathway in equine species and that the ketamine metabolism is highly stereoselective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CYP17A1 gene is the qualitative regulator of steroidogenesis. Depending on the presence or absence of CYP17 activities mineralocorticoids, glucocorticoids or adrenal androgens are produced. The expression of the CYP17A1 gene is tissue as well as species-specific. In contrast to humans, adrenals of rodents do not express the CYP17A1 gene and have therefore no P450c17 enzyme for cortisol production, but produce corticosterone. DNA methylation is involved in the tissue-specific silencing of the CYP17A1 gene in human placental JEG-3 cells. We investigated the role of DNA methylation for the tissue-specific expression of the CYP17A1 gene in rodents. Rats treated with the methyltransferase inhibitor 5-aza-deoxycytidine excreted the cortisol metabolite tetrahydrocortisol in their urine suggesting that treatment induced CYP17 expression and 17alpha-hydroxylase activity through demethylation. Accordingly, bisulfite modification experiments identified a methylated CpG island in the CYP17 promoter in DNA extracted from rat adrenals but not from testes. Both methyltransferase and histone deacetylase inhibitors induced the expression of the CYP17A1 gene in mouse adrenocortical Y1 cells which normally do not express CYP17, indicating that the expression of the mouse CYP17A1 gene is epigenetically controlled. The role of DNA methylation for CYP17 expression was further underlined by the finding that a reporter construct driven by the mouse -1041 bp CYP17 promoter was active in Y1 cells, thus excluding the lack of essential transcription factors for CYP17 expression in these adrenal cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug-drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V(max) for S-/and R-norketamine formation was 0.49 and 0.45nmol/h/mg cellular protein and K(m) was 3.41 and 2.66μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC(50) of 5.63 and 6.26μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP enzyme involved in ketamine and norketamine metabolism, thus confirming results from inhibition studies with horse liver microsomes. Clopidogrel seems to be a feasible inhibitor for equine CYP2B6. The specificity still needs to be established with other single equine CYPs. Heterologous expression of single equine CYP enzymes opens new possibilities to substantially improve the understanding of drug metabolism and drug interactions in horses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Methiopropamine [1-(thiophen-2-yl)-2-methylaminopropane, 2-MPA], a thiophene analogue of methamphetamine, is available from online vendors selling "Research chemicals." The first samples were seized by the German police in 2011. As it is a recreational stimulant, its inclusion in routine drug screening protocols should be required. The aims of this study were to identify the phase I and II metabolites of 2-MPA in rat and human urine and to identify the human cytochrome-P450 (CYP) isoenzymes involved in its phase I metabolism. In addition, the detectability of 2-MPA in urine samples using the authors' well-established gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-linear ion trap-mass spectrometry (LC-MS(n)) screening protocols was also evaluated. The metabolites were isolated from rat and human urine samples by solid-Phase extraction without or following enzymatic cleavage of conjugates. The phase I metabolites, following acetylation, were separated and identified by GC-MS and/or liquid chromatography-high-resolution linear ion trap mass spectrometry (LC-HR-MS(n)) and the phase II metabolites by LC-HR-MS(n). The following Major metabolic pathways were proposed: N-demethylation, hydroxylation at the side chain and at the thiophene ring, and combination of these transformations followed by glucuronidation and/or sulfation. CYP1A2, CYP2C19, CYP2D6, and CYP3A4 were identified as the major phase I metabolizing enzymes. They were also involved in the N-demethylation of the analogue methamphetamine and CYP2C19, CYP2D6, and CYP3A4 in its ring hydroxylation. Following the administration of a typical user's dose, 2-MPA and its metabolites were identified in rat urine using the authors' GC-MS and the LC-MS(n) screening approaches. Ingestion of 2-MPA could also be detected by both protocols in an authentic human urine sample.