4 resultados para Numerical linear algebra

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We solve two inverse spectral problems for star graphs of Stieltjes strings with Dirichlet and Neumann boundary conditions, respectively, at a selected vertex called root. The root is either the central vertex or, in the more challenging problem, a pendant vertex of the star graph. At all other pendant vertices Dirichlet conditions are imposed; at the central vertex, at which a mass may be placed, continuity and Kirchhoff conditions are assumed. We derive conditions on two sets of real numbers to be the spectra of the above Dirichlet and Neumann problems. Our solution for the inverse problems is constructive: we establish algorithms to recover the mass distribution on the star graph (i.e. the point masses and lengths of subintervals between them) from these two spectra and from the lengths of the separate strings. If the root is a pendant vertex, the two spectra uniquely determine the parameters on the main string (i.e. the string incident to the root) if the length of the main string is known. The mass distribution on the other edges need not be unique; the reason for this is the non-uniqueness caused by the non-strict interlacing of the given data in the case when the root is the central vertex. Finally, we relate of our results to tree-patterned matrix inverse problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-regeneration capacity of articular cartilage is limited, due to its avascular and aneural nature. Loaded explants and cell cultures demonstrated that chondrocyte metabolism can be regulated via physiologic loading. However, the explicit ranges of mechanical stimuli that correspond to favourable metabolic response associated with extracellular matrix (ECM) synthesis are elusive. Unsystematic protocols lacking this knowledge produce inconsistent results. This study aims to determine the intrinsic ranges of physical stimuli that increase ECM synthesis and simultaneously inhibit nitric oxide (NO) production in chondrocyte-agarose constructs, by numerically re-evaluating the experiments performed by Tsuang et al. (2008). Twelve loading patterns were simulated with poro-elastic finite element models in ABAQUS. Pressure on solid matrix, von Mises stress, maximum principle stress and pore pressure were selected as intrinsic mechanical stimuli. Their development rates and magnitudes at the steady state of cyclic loading were calculated with MATLAB at the construct level. Concurrent increase in glycosaminoglycan and collagen was observed at 2300 Pa pressure and 40 Pa/s pressure rate. Between 0-1500 Pa and 0-40 Pa/s, NO production was consistently positive with respect to controls, whereas ECM synthesis was negative in the same range. A linear correlation was found between pressure rate and NO production (R = 0.77). Stress states identified in this study are generic and could be used to develop predictive algorithms for matrix production in agarose-chondrocyte constructs of arbitrary shape, size and agarose concentration. They could also be helpful to increase the efficacy of loading protocols for avascular tissue engineering. Copyright (c) 2010 John Wiley \& Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with “The Enchanted Journey,” which is a daily event tour booked by Bollywood-film fans. During the tour, the participants visit original sites of famous Bollywood films at various locations in Switzerland; moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour. For operational reasons, however, two or more buses cannot stay at the same location simultaneously. Further operative constraints include time windows for all activities and precedence constraints between some activities. The planning problem is how to compute a feasible schedule for each bus. We implement a two-step hierarchical approach. In the first step, we minimize the total waiting time; in the second step, we minimize the total travel time of all buses. We present a basic formulation of this problem as a mixed-integer linear program. We enhance this basic formulation by symmetry-breaking constraints, which reduces the search space without loss of generality. We report on computational results obtained with the Gurobi Solver. Our numerical results show that all relevant problem instances can be solved using the basic formulation within reasonable CPU time, and that the symmetry-breaking constraints reduce that CPU time considerably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.