16 resultados para Nucleon-nucleon scattering

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show how to avoid unnecessary and uncontrolled assumptions usually made in the literature about soft SU(3) flavor symmetry breaking in determining the two-flavor nucleon matrix elements relevant for direct detection of weakly interacting massive particles (WIMPs). Based on SU(2) chiral perturbation theory, we provide expressions for the proton and neutron scalar couplings fp,nu and fp,nd with the pion-nucleon σ term as the only free parameter, which should be used in the analysis of direct detection experiments. This approach for the first time allows for an accurate assessment of hadronic uncertainties in spin-independent WIMP-nucleon scattering and for a reliable calculation of isospin-violating effects. We find that the traditional determinations of Vfpu−fnu and fpd−fnd are off by a factor of 2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a search for new particles in events with one lepton (electron or muon) and missing transverse momentum using 20.3 fb−1 of proton-proton collision data at TeX = 8 TeV recorded by the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. A W ′ with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 3.24 TeV. Excited chiral bosons (W *) with equivalent coupling strengths are excluded for masses up to 3.21 TeV. In the framework of an effective field theory limits are also set on the dark matter-nucleon scattering cross-section as well as the mass scale M * of the unknown mediating interaction for dark matter pair production in association with a leptonically decaying W.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A search for evidence of invisible-particle decay modes of a Higgs boson produced in association with a Z boson at the Large Hadron Collider is presented. No deviation from the standard model expectation is observed in 4.5 fb−1 (20.3 fb−1) of 7 (8) TeV pp collision data collected by the ATLAS experiment. Assuming the standard model rate for ZH production, an upper limit of 75%, at the 95% confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper limit on the allowed dark matter-nucleon scattering cross section within a Higgs-portal dark matter scenario. Within the constraints of such a scenario, the results presented in this Letter provide the strongest available limits for low-mass dark matter candidates. Limits are also set on an additional neutral Higgs boson, in the mass range 110 < mH < 400 GeV, produced in association with a Z boson and decaying to invisible particles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the framework of the MSSM, we examine several simplified models where only a few superpartners are light. This allows us to study WIMP-nucleus scattering in terms of a handful of MSSM parameters and thereby scrutinize their impact on dark matter direct-detection experiments. Focusing on spin-independent WIMP-nucleon scattering, we derive simplified, analytic expressions for the Wilson coefficients associated with Higgs and squark exchange. We utilize these results to study the complementarity of constraints due to direct-detection, flavor, and collider experiments. We also identify parameter configurations that produce (almost) vanishing cross sections. In the proximity of these so-called blind spots, we find that the amount of isospin violation may be much larger than typically expected in the MSSM. This feature is a generic property of parameter regions where cross sections are suppressed, and highlights the importance of a careful analysis of the nucleon matrix elements and the associated hadronic uncertainties. This becomes especially relevant once the increased sensitivity of future direct-detection experiments corners the MSSM into these regions of parameter space.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t x y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5×10−49 cm2 can be probed for WIMP masses around 40 GeV/c2. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss under which circumstances the resummation of the multiple-scattering series is justified from an EFT point of view. The application to πd and K̅d scattering is briefly discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a coupled system of integral equations for the pp → ¯NN and ¯K K → ¯N N S-waves derived from Roy–Steiner equations for pion–nucleon scattering. We discuss the solution of the corresponding two-channel Muskhelishvili–Omnès problem and apply the results to a dispersive analysis of the scalar form factor of the nucleon fully including ¯KK intermediate states. In particular, we determine the corrections Ds and DD, which are needed for the extraction of the pion– nucleon s term from pN scattering, and show that the difference DD −Ds = (−1.8±0.2)MeV is insensitive to the input pN parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion–nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion– nucleon and pion–deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion–deuteron system, and discuss the subtleties regarding the definition of the pion–nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon–nucleon scattering. Based on the p±p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a1/2/ g= (170.5±2.0) · 10−3M−1p and a3/2/ g= (−86.5±1.8) · 10−3M−1p .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe-129 and Xe-131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c(2), with a minimum cross section of 3.5 x 10(-40) cm(2) at a WIMP mass of 45 GeV/c(2), at 90% confidence level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present results on the nucleon scalar, axial, and tensor charges as well as on the momentum fraction, and the helicity and transversity moments. The pion momentum fraction is also presented. The computation of these key observables is carried out using lattice QCD simulations at a physical value of the pion mass. The evaluation is based on gauge configurations generated with two degenerate sea quarks of twisted mass fermions with a clover term. We investigate excited states contributions with the nucleon quantum numbers by analyzing three sink-source time separations. We find that, for the scalar charge, excited states contribute significantly and to a less degree to the nucleon momentum fraction and helicity moment. Our result for the nucleon axial charge agrees with the experimental value. Furthermore, we predict a value of 1.027(62) in the MS¯¯¯¯¯ scheme at 2 GeV for the isovector nucleon tensor charge directly at the physical point. The pion momentum fraction is found to be ⟨x⟩π±u−d=0.214(15)(+12−9) in the MS¯¯¯¯¯ at 2 GeV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1  GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ⟩ϕ=1.11±0.10(stat)±0.18(syst)×10−38  cm2/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10−38  cm2/nucleon and the GENIE prediction is 1.08×10−38  cm2/nucleon. The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.