12 resultados para Nonsmooth Critical Point Theory
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We explore a method developed in statistical physics which has been argued to have exponentially small finite-volume effects, in order to determine the critical temperature Tc of pure SU(3) gauge theory close to the continuum limit. The method allows us to estimate the critical coupling βc of the Wilson action for temporal extents up to Nτ∼20 with ≲0.1% uncertainties. Making use of the scale setting parameters r0 and t0−−√ in the same range of β-values, these results lead to the independent continuum extrapolations Tcr0=0.7457(45) and Tct0−−√=0.2489(14), with the latter originating from a more convincing fit. Inserting a conversion of r0 from literature (unfortunately with much larger errors) yields Tc/ΛMS¯¯¯¯¯=1.24(10).
Resumo:
We investigate the SU(3)-invariant sector of the one-parameter family of SO(8) gauged maximal supergravities that has been recently discovered. To this end, we construct the N=2 truncation of this theory and analyse its full vacuum structure. The number of critical point is doubled and includes new N=0 and N=1 branches. We numerically exhibit the parameter dependence of the location and cosmological constant of all extrema. Moreover, we provide their analytic expressions for cases of special interest. Finally, while the mass spectra are found to be parameter independent in most cases, we show that the novel non-supersymmetric branch with SU(3) invariance provides the first counterexample to this.
Resumo:
We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on T6 with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to N = 4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the N = 8 theory.
Resumo:
Antegrade nailing of proximal humeral fractures using a straight nail can damage the bony insertion of the supraspinatus tendon and may lead to varus failure of the construct. In order to establish the ideal anatomical landmarks for insertion of the nail and their clinical relevance we analysed CT scans of bilateral proximal humeri in 200 patients (mean age 45.1 years (sd 19.6; 18 to 97) without humeral fractures. The entry point of the nail was defined by the point of intersection of the anteroposterior and lateral vertical axes with the cortex of the humeral head. The critical point was defined as the intersection of the sagittal axis with the medial limit of the insertion of the supraspinatus tendon on the greater tuberosity. The region of interest, i.e. the biggest entry hole that would not encroach on the insertion of the supraspinatus tendon, was calculated setting a 3 mm minimal distance from the critical point. This identified that 38.5% of the humeral heads were categorised as 'critical types', due to morphology in which the predicted offset of the entry point would encroach on the insertion of the supraspinatus tendon that may damage the tendon and reduce the stability of fixation. We therefore emphasise the need for 'fastidious' pre-operative planning to minimise this risk.
Resumo:
he physics program of the NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment at the CERN SPS consists of three subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2010) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in p+p, p+Pb interactions and nucleus-nucleus collisions, with the aim to identify the properties of the onset of deconfinement and find evidence for the critical point of strongly interacting matter. The NA61 experiment was approved at CERN in June 2007. The first pilot run was performed during October 2007. Calibrations of all detector components have been performed successfully and preliminary uncorrected spectra have been obtained. High quality of track reconstruction and particle identification similar to NA49 has been achieved. The data and new detailed simulations confirm that the NA61 detector acceptance and particle identification capabilities cover the phase space required by the T2K experiment. This document reports on the progress made in the calibration and analysis of the 2007 data.
Resumo:
Pulmonary airways are subdivided into conducting and gas-exchanging airways. An acinus is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Until now a dissector of five consecutive sections or airway casts were used to count acini. We developed a faster method to estimate the number of acini in young adult rats. Right middle lung lobes were critical point dried or paraffin embedded after heavy metal staining and imaged by X-ray micro-CT or synchrotron radiation-based X-rays tomographic microscopy. The entrances of the acini were counted in three-dimensional (3D) stacks of images by scrolling through them and using morphological criteria (airway wall thickness and appearance of alveoli). Segmentation stopper were placed at the acinar entrances for 3D visualizations of the conducting airways. We observed that acinar airways start at various generations and that one transitional bronchiole may serve more than one acinus. A mean of 5612 (±547) acini per lung and a mean airspace volume of 0.907 (±0.108) μL per acinus were estimated. In 60-day-old rats neither the number of acini nor the mean acinar volume did correlate with the body weight or the lung volume.
Resumo:
A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.
Resumo:
We derive the fermion loop formulation for the supersymmetric nonlinear O(N) sigma model by performing a hopping expansion using Wilson fermions. In this formulation the fermionic contribution to the partition function becomes a sum over all possible closed non-oriented fermion loop configurations. The interaction between the bosonic and fermionic degrees of freedom is encoded in the constraints arising from the supersymmetry and induces flavour changing fermion loops. For N ≥ 3 this leads to fermion loops which are no longer self-avoiding and hence to a potential sign problem. Since we use Wilson fermions the bare mass needs to be tuned to the chiral point. For N = 2 we determine the critical point and present boson and fermion masses in the critical regime.
Resumo:
We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158GeV/c (√s = 6.3, 7.7,8.8, 12.3 and 17.3GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERNSPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus–nucleus and proton–nucleus collisions.
Resumo:
We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.
Resumo:
We review the failure of lowest order chiral SU(3)L ×SU(3)R perturbation theory χPT3 to account for amplitudes involving the f0(500) resonance and O(mK) extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500) resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.
Resumo:
We consider a three-dimensional effective theory of Polyakov lines derived previously from lattice Yang-Mills theory and QCD by means of a resummed strong coupling expansion. The effective theory is useful for investigations of the phase structure, with a sign problem mild enough to allow simulations also at finite density. In this work we present a numerical method to determine improved values for the effective couplings directly from correlators of 4d Yang-Mills theory. For values of the gauge coupling up to the vicinity of the phase transition, the dominant short range effective coupling are well described by their corresponding strong coupling series. We provide numerical results also for the longer range interactions, Polyakov lines in higher representations as well as four-point interactions, and discuss the growing significance of non-local contributions as the lattice gets finer. Within this approach the critical Yang-Mills coupling β c is reproduced to better than one percent from a one-coupling effective theory on N τ = 4 lattices while up to five couplings are needed on N τ = 8 for the same accuracy.