5 resultados para Nonlinear source terms

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively. We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from pharmacoresistant focal-onset epilepsy. These recordings had been performed prior to and independent from our study as part of the epilepsy diagnostics. The clinical purpose of these recordings was to delineate the brain areas to be surgically removed in each individual patient in order to achieve seizure control. This allowed us to define two distinct sets of signals: One set of signals recorded from brain areas where the first ictal EEG signal changes were detected as judged by expert visual inspection ("focal signals") and one set of signals recorded from brain areas that were not involved at seizure onset ("nonfocal signals"). We find more rejections for both the randomness and the nonlinear-independence test for focal versus nonfocal signals. In contrast more rejections of the stationarity test are found for nonfocal signals. Furthermore, while for nonfocal signals the rejection of the stationarity test increases the rejection probability of the randomness and nonlinear-independence test substantially, we find a much weaker influence for the focal signals. In consequence, the contrast between the focal and nonfocal signals obtained from the randomness and nonlinear-independence test is further enhanced when we exclude signals for which the stationarity test is rejected. To study the dependence between the randomness and nonlinear-independence test we include only focal signals for which the stationarity test is not rejected. We show that the rejection of these two tests correlates across signals. The rejection of either test is, however, neither necessary nor sufficient for the rejection of the other test. Thus, our results suggest that EEG signals from epileptogenic brain areas are less random, more nonlinear-dependent, and more stationary compared to signals recorded from nonepileptogenic brain areas. We provide the data, source code, and detailed results in the public domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major barrier to widespread clinical implementation of Monte Carlo dose calculation is the difficulty in characterizing the radiation source within a generalized source model. This work aims to develop a generalized three-component source model (target, primary collimator, flattening filter) for 6- and 18-MV photon beams that match full phase-space data (PSD). Subsource by subsource comparison of dose distributions, using either source PSD or the source model as input, allows accurate source characterization and has the potential to ease the commissioning procedure, since it is possible to obtain information about which subsource needs to be tuned. This source model is unique in that, compared to previous source models, it retains additional correlations among PS variables, which improves accuracy at nonstandard source-to-surface distances (SSDs). In our study, three-dimensional (3D) dose calculations were performed for SSDs ranging from 50 to 200 cm and for field sizes from 1 x 1 to 30 x 30 cm2 as well as a 10 x 10 cm2 field 5 cm off axis in each direction. The 3D dose distributions, using either full PSD or the source model as input, were compared in terms of dose-difference and distance-to-agreement. With this model, over 99% of the voxels agreed within +/-1% or 1 mm for the target, within 2% or 2 mm for the primary collimator, and within +/-2.5% or 2 mm for the flattening filter in all cases studied. For the dose distributions, 99% of the dose voxels agreed within 1% or 1 mm when the combined source model-including a charged particle source and the full PSD as input-was used. The accurate and general characterization of each photon source and knowledge of the subsource dose distributions should facilitate source model commissioning procedures by allowing scaling the histogram distributions representing the subsources to be tuned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we provide a passive location monitoring system for IEEE 802.15.4 signal emitters. The system adopts software defined radio techniques to passively overhear IEEE 802.15.4 packets and to extract power information from baseband signals. In our system, we provide a new model based on the nonlinear regression for ranging. After obtaining distance information, a Weighted Centroid (WC) algorithm is adopted to locate users. In WC, each weight is inversely proportional to the nth power of propagation distance, and the degree n is obtained from some initial measurements. We evaluate our system in a 16m-18m area with complex indoor propagation conditions. We are able to achieve a median error of 2:1m with only 4 anchor nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.