31 resultados para Non-respiratory
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study investigated whether the epidemiology of penicillin-non-susceptible pneumococci (PNSP) colonising small children correlated with the biannual epidemic activity of respiratory syncytial virus (RSV). Colonisation rates and the prevalence of PNSP among paediatric outpatients aged < 5 years was analysed between January 1998 and September 2003 using an established national surveillance network. Resistance trends were investigated using time-series analysis to assess the correlation with the biannual pattern of RSV infections and national sales of oral paediatric formulations of antibiotics and antibiotic prescriptions to children aged < 5 years for acute respiratory tract infections. PNSP rates exhibited a biannual cycle in phase with the biannual seasonal RSV epidemics (p < 0.05). Resistance rates were higher during the winter seasons of 1998-1999 (20.1%), 2000-2001 (16.0%) and 2002-2003 (19.1%), compared with the winter seasons of 1997-1998 (8.2%), 1999-2000 (11.6%) and 2001-2002 (9.5%). Antibiotic sales and prescriptions showed regular peaks during each winter, with no significant correlation with the biannual pattern of RSV activity and seasonal trends of PNSP. RSV is an important determinant of the spread of PNSP and must be considered in strategies aimed at antimicrobial resistance control.
Resumo:
The ability of anesthetic agents to provide adequate analgesia and sedation is limited by the ventilatory depression associated with overdosing in spontaneously breathing patients. Therefore, quantitation of drug induced ventilatory depression is a pharmacokinetic-pharmacodynamic problem relevant to the practice of anesthesia. Although several studies describe the effect of respiratory depressant drugs on isolated endpoints, an integrated description of drug induced respiratory depression with parameters identifiable from clinically available data is not available. This study proposes a physiological model of CO2 disposition, ventilatory regulation, and the effects of anesthetic agents on the control of breathing. The predictive performance of the model is evaluated through simulations aimed at reproducing experimental observations of drug induced hypercarbia and hypoventilation associated with intravenous administration of a fast-onset, highly potent anesthetic mu agonist (including previously unpublished experimental data determined after administration of 1 mg alfentanil bolus). The proposed model structure has substantial descriptive capability and can provide clinically relevant predictions of respiratory inhibition in the non-steady-state to enhance safety of drug delivery in the anesthetic practice.
Resumo:
INTRODUCTION: The simple bedside method for sampling undiluted distal pulmonary edema fluid through a normal suction catheter (s-Cath) has been experimentally and clinically validated. However, there are no data comparing non-bronchoscopic bronchoalveolar lavage (mini-BAL) and s-Cath for assessing lung inflammation in acute hypoxaemic respiratory failure. We designed a prospective study in two groups of patients, those with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and those with acute cardiogenic lung edema (ACLE), designed to investigate the clinical feasibility of these techniques and to evaluate inflammation in both groups using undiluted sampling obtained by s-Cath. To test the interchangeability of the two methods in the same patient for studying the inflammation response, we further compared mini-BAL and s-Cath for agreement of protein concentration and percentage of polymorphonuclear cells (PMNs). METHODS: Mini-BAL and s-Cath sampling was assessed in 30 mechanically ventilated patients, 21 with ALI/ARDS and 9 with ACLE. To analyse agreement between the two sampling techniques, we considered only simultaneously collected mini-BAL and s-Cath paired samples. The protein concentration and polymorphonuclear cell (PMN) count comparisons were performed using undiluted sampling. Bland-Altman plots were used for assessing the mean bias and the limits of agreement between the two sampling techniques; comparison between groups was performed by using the non-parametric Mann-Whitney-U test; continuous variables were compared by using the Student t-test, Wilcoxon signed rank test, analysis of variance or Student-Newman-Keuls test; and categorical variables were compared by using chi-square analysis or Fisher exact test. RESULTS: Using protein content and PMN percentage as parameters, we identified substantial variations between the two sampling techniques. When the protein concentration in the lung was high, the s-Cath was a more sensitive method; by contrast, as inflammation increased, both methods provided similar estimates of neutrophil percentages in the lung. The patients with ACLE showed an increased PMN count, suggesting that hydrostatic lung edema can be associated with a concomitant inflammatory process. CONCLUSIONS: There are significant differences between the s-Cath and mini-BAL sampling techniques, indicating that these procedures cannot be used interchangeably for studying the lung inflammatory response in patients with acute hypoxaemic lung injury.
Resumo:
The frequency of PRRSV corresponding to live vaccines and wild-type was determined in 902 pigs from North-Western Germany submitted for post-mortem examination. Overall, 18.5% of the samples were positive for the EU wild-type virus. EU genotype vaccine virus was detected in 1.3% and the NA genotype vaccine virus in 8.9% of all samples. The detection of the EU vaccine was significantly higher in pigs vaccinated with the corresponding vaccine (OR=9.4). Pigs vaccinated with NA genotype had significantly higher detection chances for the corresponding vaccine virus when compared to non-vaccinated animals (OR=3.34) animals, however, NA vaccine was also frequently detected in non-vaccinated pigs. Concluding, the dynamics of NA genotype vaccine and EU wild-type virus corresponds with studies on PRRSV spread in endemically infected herds. The potential of spontaneous spread of the NA genotype vaccine should be considered in the planning of eradication programs.
Resumo:
Respiratory type-IV hypersensitivity reactions due to corticosteroids is a rare phenomenon. We describe two such cases. The first is a 37- year-old atopic woman who developed labial angioedema and nasal itching after the use of budesonide nasal spray. A month later, after the first puffs of a formoterol/budesonide spray prescribed for asthma, she noticed symptoms of tongue and oropharyngeal itching and redness with subsequent dysphagia, labial and tongue angioedema, and facial oedema. The second is a 15-year-old non-atopic woman who reported pruritic eruptions around the nostrils after using a budesonide nasal spray. A year later she presented with nasal pruritus with intense congestion and labial and facial oedema after using the same spray. Both patients were evaluated with patch-tests using the commercial T.R.U.E. test, a budesonide solution, and corticosteroid creams. Test evaluation was performed at 48 and 96 hours. In both patients, patch tests were positive to budesonide (++) on the second day. The first patient also had a positive (+) reaction to tixocortol-21-pivalate. All the other patch tests were negative. Clinicians should be aware that hypersensitivity reactions may occur during the use of nasal or inhaled corticosteroids.
Resumo:
The real utilisation scenario of non-invasive ventilation (NIV) in Swiss ICUs has never been reported. Using a survey methodology, we developed a questionnaire sent to the directors of the 79 adult ICUs to identify the perceived pattern of NIV utilisation. We obtained a response rate of 62%. The overall utilisation rate for NIV was 26% of all mechanical ventilations, but we found significant differences in the utilisation rates among different linguistic areas, ranging from 20% in the German part to 48% in the French part (p <0.01). NIV was mainly indicated for the acute exacerbations of COPD (AeCOPD), acute cardiogenic pulmonary edema (ACPE) and acute respiratory failure (ARF) in selected do-not-intubate patients. In ACPE, CPAP was much less used than bi-level ventilation and was still applied in AeCOPD. The first line interface was a facial mask (81%) and the preferred type of ventilator was an ICU machine with an NIV module (69%). The perceived use of NIV is generally high in Switzerland, but regional variations are remarkable. The indications of NIV use are in accordance with international guidelines. A high percentage of units consider selected do-not-intubate conditions as an important additional indication.
Resumo:
The utility of quantitative Pneumocystis jirovecii PCR in clinical routine for diagnosing Pneumocystis pneumonia (PCP) in immunocompromised non-HIV patients is unknown. We analysed bronchoalveolar lavage fluid with real-time quantitative P. jirovecii PCR in 71 cases with definitive PCP defined by positive immunofluorescence (IF) tests and in 171 randomly selected patients with acute lung disease. In those patients, possible PCP cases were identified by using a novel standardised PCP probability algorithm and chart review. PCR performance was compared with IF testing, clinical judgment and the PCP probability algorithm. Quantitative P. jirovecii PCR values >1,450 pathogens·mL(-1) had a positive predictive value of 98.0% (95% CI 89.6-100.0%) for diagnosing definitive PCP. PCR values of between 1 and 1,450 pathogens·mL(-1) were associated with both colonisation and infection; thus, a cut-off between the two conditions could not be identified and diagnosis of PCP in this setting relied on IF and clinical assessment. Clinical PCP could be ruled out in 99.3% of 153 patients with negative PCR results. Quantitative PCR is useful for diagnosing PCP and is complementary to IF. PCR values of >1,450 pathogens·mL(-1) allow reliable diagnosis, whereas negative PCR results virtually exclude PCP. Intermediate values require additional clinical assessment and IF testing. On the basis of our data and for economic and logistical limitations, we propose a clinical algorithm in which IF remains the preferred first test in most cases, followed by PCR in those patients with a negative IF and strong clinical suspicion for PCP.
Resumo:
High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1(st) and 2(nd) ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO(2) and periodic breathing cycles significantly increased with acclimatization (p-value < 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO(2), through a significant negative correlation (p-value < 0.01). Higher Pm is observed at climbing periods visually labeled as PB with > 5 periodic breathing cycles through a significant positive correlation (p-value < 0.01). Our data demonstrate that quantification of the respiratory volume signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.
Resumo:
BACKGROUND: The time course of impairment of respiratory mechanics and gas exchange in the acute respiratory distress syndrome (ARDS) remains poorly defined. We assessed the changes in respiratory mechanics and gas exchange during ARDS. We hypothesized that due to the changes in respiratory mechanics over time, ventilatory strategies based on rigid volume or pressure limits might fail to prevent overdistension throughout the disease process. METHODS: Seventeen severe ARDS patients {PaO2/FiO2 10.1 (9.2-14.3) kPa; 76 (69-107) mmHg [median (25th-75th percentiles)] and bilateral infiltrates} were studied during the acute, intermediate, and late stages of ARDS (at 1-3, 4-6 and 7 days after diagnosis). Severity of lung injury, gas exchange, and hemodynamics were assessed. Pressure-volume (PV) curves of the respiratory system were obtained, and upper and lower inflection points (UIP, LIP) and recruitment were estimated. RESULTS: (1) UIP decreased from early to established (intermediate and late) ARDS [30 (28-30) cmH2O, 27 (25-30) cmH2O and 25 (23-28) cmH2O (P=0.014)]; (2) oxygenation improved in survivors and in patients with non-pulmonary etiology in late ARDS, whereas all patients developed hypercapnia from early to established ARDS; and (3) dead-space ventilation and pulmonary shunt were larger in patients with pulmonary etiology during late ARDS. CONCLUSION: We found a decrease in UIP from acute to established ARDS. If applied to our data, the inspiratory pressure limit advocated by the ARDSnet (30 cmH2O) would produce ventilation over the UIP, with a consequent increased risk of overdistension in 12%, 43% and 65% of our patients during the acute, intermediate and late phases of ARDS, respectively. Lung protective strategies based on fixed tidal volume or pressure limits may thus not fully avoid the risk of lung overdistension throughout ARDS.
Resumo:
There is increasing evidence that air pollution particularly affects infants and small preschool children. However, detecting air pollution effects on lung function in small children is technically difficult and requires non-invasive methods that can assess lung function and inflammatory markers in larger cohorts. This review discusses the principles, usefulness and shortcomings of various lung function techniques used to detect pollution effects in small children. The majority of these techniques have been used to detect effects of the dominant indoor pollutant, tobacco exposure. However there is increasing evidence that non-invasive lung function techniques can also detect the effects of outdoor air pollution.
Resumo:
OBJECTIVE: Neurally adjusted ventilatory assist uses the electrical activity of the diaphragm (EAdi)-a pneumatically-independent signal-to control the timing and pressure of the ventilation delivered, and should not be affected by leaks. The aim of this study was to evaluate whether NAVA can deliver assist in synchrony and proportionally to EAdi after extubation, with a leaky non-invasive interface. DESIGN AND SETTING: Prospective, controlled experimental study in an animal laboratory. ANIMALS: Ten rabbits, anesthetized, mechanically ventilated. INTERVENTIONS: Following lung injury, the following was performed in sequential order: (1) NAVA delivered via oral endotracheal tube with PEEP; (2) same as (1) without PEEP; (3) non-invasive NAVA at unchanged NAVA level and no PEEP via a single nasal prong; (4) no assist; (5) non-invasive NAVA at progressively increasing NAVA levels. MEASUREMENTS AND RESULTS: EAdi, esophageal pressure, blood gases and hemodynamics were measured during each condition. For the same NAVA level, the mean delivered pressure above PEEP increased from 3.9[Symbol: see text]+/-[Symbol: see text]1.4[Symbol: see text]cmH(2)O (intubated) to 7.5[Symbol: see text]+/-[Symbol: see text]3.8[Symbol: see text]cmH(2)O (non-invasive) (p[Symbol: see text]<[Symbol: see text]0.05) because of increased EAdi. No changes were observed in PaO(2) and PaCO(2). Increasing the NAVA level fourfold during non-invasive NAVA restored EAdi and esophageal pressure swings to pre-extubation levels. Triggering (106[Symbol: see text]+/-[Symbol: see text]20[Symbol: see text]ms) and cycling-off delays (40[Symbol: see text]+/-[Symbol: see text]21[Symbol: see text]ms) during intubation were minimal and not worsened by the leak (95[Symbol: see text]+/-[Symbol: see text]13[Symbol: see text]ms and 33[Symbol: see text]+/-[Symbol: see text]9[Symbol: see text]ms, respectively). CONCLUSION: NAVA can be effective in delivering non-invasive ventilation even when the interface with the patient is excessively leaky, and can unload the respiratory muscles while maintaining synchrony with the subject's demand.
Resumo:
Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.
Resumo:
INTRODUCTION: It has been suggested that infants dynamically regulate their tidal flow and end-expiratory volume level. The interaction between muscle activity, flow and lung volume in spontaneously sleeping neonates is poorly studied, since it requires the assessment of transcutaneous electromyography of respiratory muscles (rEMG) in matched comparison to lung function measurements. METHODS: After determining feasibility and repeatability of rEMG in 20 spontaneously sleeping healthy neonates, we measured the relative impact of intercostal and diaphragmatic EMG activity in direct comparison to the resulting tidal flow and FRC. RESULTS: We found good feasibility, repeatability and correlation of timing indices between rEMG activity and flow. The rEMG amplitude was significantly dependent on the resistive load of the face mask. Diaphragm and intercostal muscle activity commenced prior to the onset of flow and remained active during the expiratory cycle. The relative contribution of intercostal and diaphragmatic activity to flow was variable and changed dynamically. CONCLUSION: Using matched rEMG, air flow and lung volume measurements, we have found good feasibility and repeatability of intercostal and diaphragm rEMG measurements and provide the first quantitative measures of the temporal relationship between muscle activity and flow in spontaneously sleeping healthy neonates. Lung mechanical function is dynamically regulated and adapts on a breath to breath basis. So, non-invasive rEMG measurements alone or in combination with lung function might provide a more comprehensive picture of pulmonary mechanics in future studies. The data describing the timing of EMG and flow may be important for future studies of EMG triggered mechanical ventilation.
Resumo:
RATIONALE: Structural alterations to airway smooth muscle (ASM) are a feature of asthma and cystic fibrosis (CF) in adults. OBJECTIVES: We investigated whether increase in ASM mass is already present in children with chronic inflammatory lung disease. METHODS: Fiberoptic bronchoscopy was performed in 78 children (median age [IQR], 11.3 [8.5-13.8] yr): 24 with asthma, 27 with CF, 16 with non-CF bronchiectasis (BX), and 11 control children without lower respiratory tract disease. Endobronchial biopsy ASM content and myocyte number and size were quantified using stereology. MEASUREMENTS AND MAIN RESULTS: The median (IQR) volume fraction of subepithelial tissue occupied by ASM was increased in the children with asthma (0.27 [0.12-0.49]; P < 0.0001), CF (0.12 [0.06-0.21]; P < 0.01), and BX (0.16 [0.04-0.21]; P < 0.01) compared with control subjects (0.04 [0.02-0.05]). ASM content was related to bronchodilator responsiveness in the asthmatic group (r = 0.66, P < 0.01). Median (IQR) myocyte number (cells per mm(2) of reticular basement membrane) was 8,204 (5,270-11,749; P < 0.05) in children with asthma, 4,504 (2,838-8,962; not significant) in children with CF, 4,971 (3,476-10,057; not significant) in children with BX, and 1,944 (1,596-6,318) in control subjects. Mean (SD) myocyte size (mum(3)) was 3,344 (801; P < 0.01) in children with asthma, 3,264 (809; P < 0.01) in children with CF, 3,177 (873; P < 0.05) in children with BX, and 1,927 (386) in control subjects. In all disease groups, the volume fraction of ASM in subepithelial tissue was related to myocyte number (asthma: r = 0.84, P < 0.001; CF: r = 0.81, P < 0.01; BX: r = 0.95, P < 0.001), but not to myocyte size. CONCLUSIONS: Increases in ASM (both number and size) occur in children with chronic inflammatory lung diseases that include CF, asthma, and BX.