44 resultados para Non-negative sources
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Radiocarbon offers a unique possibility for unambiguous source apportionment of carbonaceous particles due to a direct distinction of non-fossil and fossil carbon. In this work, particulate matter of different size fractions was collected at 4 sites in Switzerland to examine whether fine and coarse carbonaceous particles exhibit different fossil and contemporary sources. Elemental carbon (EC) and organic carbon (OC) as well as water-soluble OC (WSOC) and water-insoluble OC (WINSOC) were separated and determined for subsequent 14C measurement. In general, both fossil and non-fossil fractions in OC and EC were found more abundant in the fine than in the coarse mode. However, a substantial fraction (~20 ± 5%) of fossil EC was found in coarse particles, which could be attributed to traffic-induced non-exhaust emissions. The contribution of biomass burning to coarse-mode EC in winter was relatively high, which is likely associated to the coating of EC with organic and/or inorganic substances emitted from intensive wood burning. Further, fossil OC (i.e. from vehicle emissions) was found to be smaller than non-fossil OC due to the presence of primary biogenic OC and/or growing in size of wood-burning OC particles during aging processes. 14C content in WSOC indicated that the second organic carbon rather stems from non-fossil precursors for all samples. Interestingly, both fossil and non-fossil WINSOC concentrations were found to be higher in fine particles than in coarse particles in winter, which is likely due to primary wood burning emissions and/or secondary formation of WINSOC.
Resumo:
During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.
Resumo:
Radiocarbon (14C) measurements of both organic carbon (OC) and elemental carbon (EC) allow a more detailed source apportionment, leading to a full and unambiguous distinction and quantification of the contributions from non-fossil and fossil sources. A thermal-optical method with a commercial OC/EC analyzer to isolate water-insoluble OC (WIOC) and EC for their subsequent 14C measurement was applied for the first time to filtered precipitation samples collected at a costal site in Portugal and at a continental site in Switzerland. Our results show that WIOC in precipitation is dominated by non-fossil sources such as biogenic and biomass-burning emissions regardless of rain origins and seasons, whereas EC sources are shared by fossil-fuel combustion and biomass burning. In addition, monthly variation of WIOC in Switzerland was characterized by higher abundance in warm than in cold seasons, highlighting the importance of biogenic emissions to particulate carbon in rainwater. Samples with high particulate carbon concentrations in Portugal were found to be associated with increased biogenic input. Despite the importance of non-fossil sources, fossil emissions account for approximately 20% of particulate carbon in wet deposition for our study, which is in line with fossil contribution in bulk rainwater dissolved organic carbon as well as aerosol WIOC and EC estimated by the 14C approach from other studies.
Resumo:
INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.
Resumo:
OBJECTIVE: The aim of our study was to correlate global T2 values of microfracture repair tissue (RT) with clinical outcome in the knee joint. METHODS: We assessed 24 patients treated with microfracture in the knee joint. Magnetic resonance (MR) examinations were performed on a 3T MR unit, T2 relaxation times were obtained with a multi-echo spin-echo technique. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. Slices covering the cartilage RT were selected and region of interest analysis was done. An individual T2 index was calculated with global mean T2 of the RT and global mean T2 of normal, hyaline cartilage. The Lysholm score and the International Knee Documentation Committee (IKDC) knee evaluation forms were used for the assessment of clinical outcome. Bivariate correlation analysis and a paired, two tailed t test were used for statistics. RESULTS: Global T2 values of the RT [mean 49.8ms, standards deviation (SD) 7.5] differed significantly (P<0.001) from global T2 values of normal, hyaline cartilage (mean 58.5ms, SD 7.0). The T2 index ranged from 61.3 to 101.5. We found the T2 index to correlate with outcome of the Lysholm score (r(s)=0.641, P<0.001) and the IKDC subjective knee evaluation form (r(s)=0.549, P=0.005), whereas there was no correlation with the IKDC knee form (r(s)=-0.284, P=0.179). CONCLUSION: These findings indicate that T2 mapping is sensitive to assess RT function and provides additional information to morphologic MRI in the monitoring of microfracture.
Resumo:
Radiocarbon analysis of the carbonaceous aerosol allows an apportionment of fossil and non-fossil sources of airborne particulate matter (PM). A chemical separation of total carbon (TC) into its subfractions organic carbon (OC) and elemental carbon (EC) refines this powerful technique, as OC and EC originate from different sources and undergo different processes in the atmosphere. Although C-14 analysis of TC, EC, and OC has recently gained increasing attention, interlaboratory quality assurance measures have largely been missing, especially for the isolation of EC and OC. In this work, we present results from an intercomparison of 9 laboratories for C-14 analysis of carbonaceous aerosol samples on quartz fiber filters. Two ambient PM samples and 1 reference material (RM 8785) were provided with representative filter blanks. All laboratories performed C-14 determinations of TC and a subset of isolated EC and OC for isotopic measurement. In general, C-14 measurements of TC and OC agreed acceptably well between the laboratories, i.e. for TC within 0.015-0.025 (FC)-C-14 for the ambient filters and within 0.041 (FC)-C-14 for RM 8785. Due to inhomogeneous filter loading, RM 8785 demonstrated only limited applicability as a reference material for C-14 analysis of carbonaceous aerosols. C-14 analysis of EC revealed a large deviation between the laboratories of 28-79 as a consequence of different separation techniques. This result indicates a need for further discussion on optimal methods of EC isolation for C-14 analysis and a second stage of this intercomparison.
Resumo:
The presentation will start by unfolding the various layers of chariot imagery in early Indian sources, namely, chariots as vehicles of gods such as the sun (sūrya), i.e. as symbol of cosmic stability; chariots as symbols of royal power and social prestige e.g. of Brahmins; and, finally, chariots as metaphors for the “person”, the “mind” and the “way to liberation” (e.g., Kaṭ.-Up. III.3; Maitr.-Up. II. 6). In Buddhist and non-Buddhist sources, chariots are in certain aspects used as a metaphor for the (old) human body (e.g., Caraka-S., Vi.3.37-38; D II.100; D II.107); apart from that, there is, of course, mention of the “real” use of chariots in sports, cults, journey, and combat. The most prominent example of the Buddhist use of chariot imagery is its application as a model for the person (S I.134 f.; Milindapañha, ed. Trenckner, 26), i.e., for highlighting the “non-substantial self”. There are, however, other significant examples of the usage of chariot imagery in early Buddhist texts. Of special interest are those cases in which chariot metaphors were applied in order to explain how the ‘self’ may proceed on the way to salvation – with ‘mindfulness’ or the ‘self’ as charioteer, with ‘wisdom’ and ‘confidence’ as horses etc. (e.g. S I. 33; S V.7; Dhp 94; or the Nārada-Jātaka, No. 545, verses 181-190). One might be tempted to say that these instances reaffirm the traditional soteriology of a substantial “progressing soul”. Taking conceptual metaphor analysis as a tool, I will, in contrast, argue that there is a special Buddhist use of this metaphor. Indeed, at first sight, it seems to presuppose a non-Buddhist understanding (the “self” as charioteer; the chariot as vehicle to liberation, etc.). Yet, it will be argued that in these cases the chariot imagery is no longer fully “functional”. The Buddhist usage may, therefore, best be described as a final allegorical phase of the chariot-imagery, which results in a thorough deconstruction of the “chariot” itself.
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.
Resumo:
In a partially ordered semigroup with the duality (or polarity) transform, it is pos- sible to define a generalisation of continued fractions. General sufficient conditions for convergence of continued fractions are provided. Two particular applications concern the cases of convex sets with the Minkowski addition and the polarity transform and the family of non-negative convex functions with the Legendre–Fenchel and Artstein-Avidan–Milman transforms.
Resumo:
BACKGROUND: Patients coinfected with hepatitis C virus (HCV) and HIV experience higher mortality rates than patients infected with HIV alone. We designed a study to determine whether risks for later mortality are similar for HCV-positive and HCV-negative individuals when subjects are stratified on the basis of baseline CD4+ T-cell counts. METHODS: Antiretroviral-naive individuals, who initiated highly active antiretroviral therapy (HAART) between 1996 and 2002 were included in the study. HCV-positive and HCV-negative individuals were stratified separately by baseline CD4+ T-cell counts of 50 cell/microl increments. Cox-proportional hazards regression was used to model the effect of these strata with other variables on survival. RESULTS: CD4+ T-cell strata below 200 cells/microl, but not above, imparted an increased relative hazard (RH) of mortality for both HCV-positive and HCV-negative individuals. Among HCV-positive individuals, after adjustment for baseline age, HIV RNA levels, history of injection drug use and adherence to therapy, only CD4+ T-cell strata of <50 cells/microl (RH=4.60; 95% confidence interval [CI] 2.72-7.76) and 50-199 cells/microl (RH=2.49; 95% CI 1.63-3.81) were significantly associated with increased mortality when compared with those initiating therapy at cell counts >500 cells/microl. The same baseline CD4+ T-cell strata were found for HCV-negative individuals. CONCLUSION: In a within-groups analysis, the baseline CD4+ T-cell strata that are associated with increased RHs for mortality are the same for HCV-positive and HCV-negative individuals initiating HAART. However, a between-groups analysis reveals a higher absolute mortality risk for HCV-positive individuals.
Resumo:
Brain electric mechanisms of temporary, functional binding between brain regions are studied using computation of scalp EEG coherence and phase locking, sensitive to time differences of few milliseconds. However, such results if computed from scalp data are ambiguous since electric sources are spatially oriented. Non-ambiguous results can be obtained using calculated time series of strength of intracerebral model sources. This is illustrated applying LORETA modeling to EEG during resting and meditation. During meditation, time series of LORETA model sources revealed a tendency to decreased left-right intracerebral coherence in the delta band, and to increased anterior-posterior intracerebral coherence in the theta band. An alternate conceptualization of functional binding is based on the observation that brain electric activity is discontinuous, i.e., that it occurs in chunks of up to about 100 ms duration that are detectable as quasi-stable scalp field configurations of brain electric activity, called microstates. Their functional significance is illustrated in spontaneous and event-related paradigms, where microstates associated with imagery- versus abstract-type mentation, or while reading positive versus negative emotion words showed clearly different regions of cortical activation in LORETA tomography. These data support the concept that complete brain functions of higher order such as a momentary thought might be incorporated in temporal chunks of processing in the range of tens to about 100 ms as quasi-stable brain states; during these time windows, subprocesses would be accepted as members of the ongoing chunk of processing.
Resumo:
We performed 124 measurements of particulate matter (PM(2.5)) in 95 hospitality venues such as restaurants, bars, cafés, and a disco, which had differing smoking regulations. We evaluated the impact of spatial separation between smoking and non-smoking areas on mean PM(2.5) concentration, taking relevant characteristics of the venue, such as the type of ventilation or the presence of additional PM(2.5) sources, into account. We differentiated five smoking environments: (i) completely smoke-free location, (ii) non-smoking room spatially separated from a smoking room, (iii) non-smoking area with a smoking area located in the same room, (iv) smoking area with a non-smoking area located in the same room, and (v) smoking location which could be either a room where smoking was allowed that was spatially separated from non-smoking room or a hospitality venue without smoking restriction. In these five groups, the geometric mean PM(2.5) levels were (i) 20.4, (ii) 43.9, (iii) 71.9, (iv) 110.4, and (v) 110.3 microg/m(3), respectively. This study showed that even if non-smoking and smoking areas were spatially separated into two rooms, geometric mean PM(2.5) levels in non-smoking rooms were considerably higher than in completely smoke-free hospitality venues. PRACTICAL IMPLICATIONS: PM(2.5) levels are considerably increased in the non-smoking area if smoking is allowed anywhere in the same location. Even locating the smoking area in another room resulted in a more than doubling of the PM(2.5) levels in the non-smoking room compared with venues where smoking was not allowed at all. In practice, spatial separation of rooms where smoking is allowed does not prevent exposure to environmental tobacco smoke in nearby non-smoking areas.