20 resultados para Non-gravitational force

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the annihilation vertex of antihydrogen atoms after their free fall while moving horizontally in a vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle detectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The indirect solar radiation pressure caused by reflected or re-emitted radiation by the Earth’s surface is an important non-gravitational force perturbing the orbits of geodetic satellites (Rubincam and Weiss, 1986; Martin and Rubincam, 1996). In the case of LAGEOS this acceleration is of the order of 15% of the direct solar radiation pressure. Therefore, Earth radiation pressure has a non-negligible impact not only on LAGEOS orbits, but also on the SLR-derived terrestrial reference frame. We investigate the impact of the Earth radiation pressure on LAGEOS orbits and on the SLR-derived parameters. Earth radiation pressure has a remarkable impact on the semi-major axes of the LAGEOS satellites, causing a systematic reduction of 1.5 mm. The infrared Earth radiation causes a reduction of about 1.0 mm and the Earth’s reflectivity of 0.5 mm of the LAGEOS’ semi-major axes. The global scale defined by the SLR network is changed by 0.07 ppb, when applying Earth radiation pressure. The resulting station heights differ by 0.5-0.6 mm in the solution with and without Earth radiation pressure. However, when range biases are estimated, the height differences are absorbed by the range biases, and thus, the station heights are not shifted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LARES is a new spherical geodetic satellite designed for SLR observations. It is made of solid tungsten alloy covered with 92 corner cubes. Due to a very small area-to-mass ratio, the sensitivity of LARES orbits to non-gravitational forces is greatly minimized. We processed 82 weeks (Feb12-Aug13) of LARES observations from a global SLR network and we analyzed the contribution of LARES data to the current SLR products (e.g., global scale and geocenter coordinates). The quality of the combined LARES+LAGEOS-1/2 solutions is also addressed in the paper. Introduction LARES

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The NASA mission GRAIL (Gravity Recovery and Interior Laboratory) inherited its concept from the GRACE (Gravity Recovery and Climate Experiment) mission to determine the gravity field of the Moon. We present lunar gravity fields based on the data of GRAIL’s primary mission phase. Gravity field recovery is realized in the framework of the Celestial Mechanics Approach, using a development version of the Bernese GNSS Software along with Ka-band range-rate data series as observations and the GNI1B positions provided by NASA JPL as pseudo-observations. By comparing our results with the official level-2 GRAIL gravity field models we show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced pseudo-stochastic pulses (i.e., instantaneous velocity changes). We present and evaluate two lunar gravity field solutions up to degree and order 200 – AIUB-GRL200A and AIUB-GRL200B. While the first solution uses no gravity field information beyond degree 200, the second is obtained by using the official GRAIL field GRGM900C up to degree and order 660 as a priori information. This reduces the omission errors and demonstrates the potential quality of our solution if we resolved the gravity field to higher degree.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of the AEgIS experiment is to measure the gravitational acceleration of antihydrogen – the simplest atom consisting entirely of antimatter – with the ultimate precision of 1%. We plan to verify the Weak Equivalence Principle (WEP), one of the fundamental laws of nature, with an antimatter beam. The experiment consists of a positron accumulator, an antiproton trap and a Stark accelerator in a solenoidal magnetic field to form and accelerate a pulsed beam of antihydrogen atoms towards a free-fall detector. The antihydrogen beam passes through a moir ́e deflectometer to measure the vertical displacement due to the gravitational force. A position and time sensitive hybrid detector registers the annihilation points of the antihydrogen atoms and their time-of-flight. The detection principle has been successfully tested with antiprotons and a miniature moir ́e deflectometer coupled to a nuclear emulsion detector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE The cost-effectiveness of cast nonprecious frameworks has increased their prevalence in cemented implant crowns. The purpose of this study was to assess the effect of the design and height of the retentive component of a standard titanium implant abutment on the fit, possible horizontal rotation and retention forces of cast nonprecious alloy crowns prior to cementation. MATERIALS AND METHODS Two abutment designs were examined: Type A with a 6° taper and 8 antirotation planes (Straumann Tissue-Level RN) and Type B with a 7.5° taper and 1 antirotation plane (SICace implant). Both types were analyzed using 60 crowns: 20 with a full abutment height (6 mm), 20 with a medium abutment height (4 mm), and 20 with a minimal (2.5 mm) abutment height. The marginal and internal fit and the degree of possible rotation were evaluated by using polyvinylsiloxane impressions under a light microscope (magnification of ×50). To measure the retention force, a custom force-measuring device was employed. STATISTICAL ANALYSIS one-sided Wilcoxon rank-sum tests with Bonferroni-Holm corrections, Fisher's exact tests, and Spearman's rank correlation coefficient. RESULTS Type A exhibited increased marginal gaps (primary end-point: 55 ± 20 μm vs. 138 ± 59 μm, P < 0.001) but less rotation (P < 0.001) than Type B. The internal fit was also better for Type A than for Type B (P < 0.001). The retention force of Type A (2.49 ± 3.2 N) was higher (P = 0.019) than that of Type B (1.27 ± 0.84 N). Reduction in abutment height did not affect the variables observed. CONCLUSION Less-tapered abutments with more antirotation planes provide an increase in the retention force, which confines the horizontal rotation but widens the marginal gaps of the crowns. Thus, casting of nonprecious crowns with Type A abutments may result in clinically unfavorable marginal gaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) due to atherosclerosis of the arterial vessel wall and to thrombosis is the foremost cause of premature mortality and of disability-adjusted life years (DALYs) in Europe, and is also increasingly common in developing countries.1 In the European Union, the economic cost of CVD represents annually E192 billion1 in direct and indirect healthcare costs. The main clinical entities are coronary artery disease (CAD), ischaemic stroke, and peripheral arterial disease (PAD). The causes of these CVDs are multifactorial. Some of these factors relate to lifestyles, such as tobacco smoking, lack of physical activity, and dietary habits, and are thus modifiable. Other risk factors are also modifiable, such as elevated blood pressure, type 2 diabetes, and dyslipidaemias, or non-modifiable, such as age and male gender. These guidelines deal with the management of dyslipidaemias as an essential and integral part of CVD prevention. Prevention and treatment of dyslipidaemias should always be considered within the broader framework of CVD prevention, which is addressed in guidelines of the Joint European Societies’ Task forces on CVD prevention in clinical practice.2 – 5 The latest version of these guidelines was published in 20075; an update will become available in 2012. These Joint ESC/European Atherosclerosis Society (EAS) guidelines on the management of dyslipidaemias are complementary to the guidelines on CVD prevention in clinical practice and address not only physicians [e.g. general practitioners (GPs) and cardiologists] interested in CVD prevention, but also specialists from lipid clinics or metabolic units who are dealing with dyslipidaemias that are more difficult to classify and treat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To test in vitro the mechanical resistance, rotational misfit and failure mode of three original implant-abutment connections and to compare them to two connections between non-original abutments connected to one of the original implants. MATERIAL AND METHODS: Three different implants with small diameters (3.3 mm for Straumann Roxolid, 3.5 mm for Nobel Biocare Replace and Astra Tech Osseospeed TX) were connected with individualized titanium abutments. Twelve implants from each system were connected to their original abutments (Straumann CARES, Nobel Biocare Procera, Astra Tech Atlantis). Twenty-four Roxolid implants were connected with non-original abutments using CAD/CAM procedures from the other two manufacturers (12 Nobel Biocare Procera and 12 Astra Tech Atlantis). For the critical bending test, a Zwick/Roell 1475 machine and the Xpert Zwick/Roell software were used. RESULTS: The rotational misfit varied when comparing the different interfaces. The use of non-original grade V titanium abutments on Roxolid implants increased the force needed for deformation. The fracture mode was different with one of the original connections. CONCLUSIONS: Non-original abutments differ in design of the connecting surfaces and material and demonstrate higher rotational misfit. These differences may result in unexpected failure modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesenchymal stem cell (MSC) therapy is a promising approach for regaining muscle function after trauma. Prior to clinical application, the ideal time of transplantation has to be determined. We investigated the effects of immediate and delayed transplantation. Sprague-Dawley rats received a crush trauma to the left soleus muscle. Treatment groups were transplanted locally with 2 × 10(6) autologous MSCs, either immediately or 7 days after trauma. Saline was used as sham therapy. Contraction force tests and histological analyses were performed 4 weeks after injury. GFP-labelled MSCs were followed after transplantation. The traumatized soleus muscles of the sham group displayed a reduction of twitch forces to 36 ± 17% and of tetanic forces to 29 ± 11% of the non-injured right control side, respectively. Delayed MSC transplantation resulted in a significant improvement of contraction maxima in both stimulation modes (twitch, p = 0.011; tetany, p = 0.014). Immediate transplantation showed a significant increase in twitch forces to 59 ± 17% (p = 0.043). There was no significant difference in contraction forces between muscles treated by immediate and delayed cell transplantation. We were able to identify MSCs in the interstitium of the injured muscles up to 4 weeks after transplantation. Despite the fundamental differences of the local environment, which MSCs encounter after transplantation, similar results could be obtained with respect to functional muscle regeneration. We believe that transplanted MSCs residing in the interstitial compartment evolve their regenerative capabilities through paracrine pathways. Our data suggest a large time window of the therapeutical measures.