6 resultados para Nitrogen Sorption Measurements

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Although lung clearance index (LCI) is a sensitive indicator of mild cystic fibrosis (CF) lung disease, it is rarely measured due to lengthy protocols and the commercial unavailability of multiple-breath washout (MBW) setups and tracer gases. We used a newly validated, commercially available nitrogen (N(2) ) MBW setup to assess success rate, duration, and variability of LCI within a 20 min timeframe, during clinical routine. We also evaluated the relationship between LCI and other clinical markers of CF lung disease. METHODS: One hundred thirty six children (83 with CF) between 4 and 16 years were studied in a pediatric CF outpatient setting. One hundred eighteen out of 136 children were naïve to MBW. Within 20 min, each child was trained, N(2) MBW was performed, and LCI was analyzed. We assessed intra- and between-test reproducibility in a subgroup of children. RESULTS: At least one LCI was feasible in 123 (90%) children, with a mean (range) of 3.3 (1.2-6.4) min per test. Two or more measurements were feasible in 56 (41%) children. Comparing LCI in CF versus controls, LCI mean (SD) was 12.0 (3.9) versus 6.1 (0.9), and the intra- and inter-test coefficient of repeatability was 1.00 versus 0.81 and 0.96 versus 0.62, respectively. LCI was correlated with spirometry, blood gases, and Pseudomonas aeruginosa infection. CONCLUSIONS: Using available N(2) MBW equipment, LCI measurements are practical and fast in children. LCI is correlated with markers of CF lung disease. Longer timeframes would be required for triplicate N(2) MBW tests in inexperienced children. Pediatr Pulmonol. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple-breath washout (MBW)-derived lung clearance index (LCI) is a sensitive measure of ventilation inhomogeneity in patients with cystic fibrosis (CF), but LCI measurement is time consuming. We systematically assessed ways to shorten LCI measurements. In 68 school-aged children (44 with mild CF lung disease) three standard nitrogen (N2) MBWs were applied. We assessed repeatability and diagnostic performance of (1) LCI measured earlier from three MBW runs and (2) LCI measured at complete MBW (1/40th of starting N2 concentration) from two runs only. Compared with the standard LCI from three complete MBW runs, the new LCI based on three N2MBW runs until 1/20th, or two complete runs until 1/40th, provided similar or better repeatability as well as sensitivity and specificity for CF lung disease. Alternative ways to measure LCI reduced test duration in children with CF by 30% and 41%, respectively. LCI measurements can be reliably shortened in children. These new MBW protocols may advance the transition of LCI from research into clinical settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57′ N, 7°26′ E) is presented and compared to ECMWF wind data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis and characterization of colored ZnO-based powders via solution combustion reaction of urea and zinc nitrate hexahydrate in varying molar ratios between 1:1 and 10:1. Among other techniques, we employ X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy to characterize the products. Within a narrow range of reactant ratios, we reproducibly find an unidentified, crystalline precursor phase related to isocyanuric acid next to ZnO. Finally, we complement our investigations by performing Prompt Gamma Activation Analysis (PGAA) on selected products in order to directly determine elemental bulk compositions and compare these with X-ray photoelectron spectroscopy (XPS) measurements. Our data show traces of nitrogen mainly on the surface of the particles, and thus we question the solution combustion method as a reliable synthesis toward N-doped ZnO. Furthermore, we exclude nitrogen as being responsible for the appearance of the four controversially discussed Raman bands superimposed onto the spectrum of pure ZnO (at 275, 510, 582, and 643 cm–1) and show that the combination of PGAA and XPS is an excellent and complementary method to obtain information about the distribution of the elements in question.